C O M M U N I C A T I O N S
formation of CoPt alloy nanoparticles and nanorods with different
compositions and crystal phases. The decrease in melting point of
nanoparticles21 could be relevant for the formation of stable CoPt
alloys.
Acknowledgment. This work is supported partially by NSF
(CTS-0417722) and DOE through LLE (DE-FC03-92SF19460).
This work made use of Shared Experimental Facilities at the Cornell
Center for Materials research (CCMR) supported by NSF. We thank
Dr. Mick Thomas for help.
Supporting Information Available: Synthetic procedures for
[BMIM][Tf2N], CoPt nanoparticles, nanorods, and hyperbranched
nanorods. TEM, EDX, and UHV-STEM analysis of nanoparticles,
Figures S1-5 and Tables S1-3. This material is available free of charge
Figure 3. PXRD patterns of the Co-Pt nanomaterials obtained at the
different reactant mole ratios of Pt(acac)2:Co(acac)3:CTAB: (a) 10:3.3:10,
(b) 3.3:3.3:10, and (c) 3.3:10:10, respectively.
particles were highly crystalline, inset of Figure 2b. When the
Pt(acac)2:Co(acac)3 molar ratio was below one, bundles of nanorods
were the major product, Figure 2c. The average composition of
the bundles of Co-Pt nanorods shown in Figure 2c was Co68Pt32,
Table S3. This value was close but smaller than the number of
Co75Pt25 (or Co3Pt) obtained on selected individual rods. The micro-
electron diffraction on the selected single rod revealed the single-
crystalline nature of the individual rods, inset of Figure 2c. The
estimated yield of the reactions based on Co elemental analysis
was about 60%. The solvent properties18 of [BMIM][Tf2N] IL
appeared to play an important role in the formation of CoPt
nanorods. Polydispersed nanoparticles, instead of nanorods, were
obtained when we replaced [BMIM][Tf2N] with trioctylamine as
solvent and reacted at ∼340 °C, Figure S4. Hyperbranched nanorods
were obtained at relatively low concentrations of Pt(acac)2 and
Co(acac)3, Figure 2d.
The anisotropic interaction between the capping agents and the
different facets of Co-Pt crystals should also be essential for the
formation of nanorods and hyperbranched nanorods. To examine
the effect of surfactants on the growth mechanism, we replaced
CTAB with N,N-dimethylhexadecylamine (DMHA), which had
similar alkane chain length and an amine function group. Further-
more, DMHA could form from CTAB at high temperatures.19
Similar morphological control over Co-Pt systems was achieved
using DMHA as surfactant, Figure S5. This result suggested that
the amine should be the crucial functional group in the control of
the anisotropic growth of Co-Pt nanorods.
Our EDX data indicated that different Co-Pt alloy nanoparticles
and nanorods could be made. This result was confirmed by the
powder X-ray diffraction (PXRD) study, Figure 3. The main
diffraction peaks from nanoparticles made at Pt(acac)2:Co(acac)3
molar ratio of ∼3 matched those for CoPt3 alloy (space group:
Pm3m). The peak position of (111) diffraction between 40° and
43° 2θ shifted toward high angle with the decrease of Pt(acac)2:
Co(acac)3 molar ratio, suggesting the Co-Pt nanoparticles and
nanorods form over a wide range of Co-Pt atomic ratios. The (111)
diffraction of Co-Pt alloy for the nanorods shown in Figure 2c
was at 41.6° 2θ, which belongs to CoPt alloy, Figure 3c.20 It is
noted that Weller et al. have studied the formation of Co-Pt
nanoparticles in conventional organic solvents below 300 °C.1j In
those cases, only CoPt3 nanoparticles could form over a wide range
of Pt/Co precursor ratios. The combined high-temperature environ-
ment and the unique property of IL18 could attribute to the observed
References
(1) For recent examples, see: (a) Murray, C. B.; Kagan, C. R.; Bawendi, M.
G. Annu. ReV. Mater. Sci. 2000, 30, 545-610. (b) Manna, L.; Milliron,
D. J.; Meisel, A.; Scher, E. C.; Alivisatos, A. P. Nat. Mater. 2003, 2,
382-385. (c) Milliron, D. J.; Hughes, S. M.; Cui, Y.; Manna, L.; Li, J.
B.; Wang, L. W.; Alivisatos, A. P. Nature 2004, 430, 190-195. (d) Peng,
Z. A.; Peng, X. G. J. Am. Chem. Soc. 2001, 123, 1389-1395. (e) Lee, S.
M.; Jun, Y. W.; Cho, S. N.; Cheon, J. J. Am. Chem. Soc. 2002, 124,
11244-11245. (f) Murray, C. B.; Sun, S. H.; Doyle, H.; Betley, T. MRS
Bull. 2001, 26, 985-991. (g) Hyeon, T. Chem. Commun. 2003, 927-
934. (h) Sun, S. H.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. Science
2000, 287, 1989-1992. (i) Teng, X. W.; Yang, H. J. Mater. Chem. 2004,
14, 774-779. (j) Shevchenko, E. V.; Talapin, D. V.; Rogach, A. L.;
Kornowski, A.; Haase, M.; Weller, H. J. Am. Chem. Soc. 2002, 124,
11480-11485. (k) Zhang, Z. T.; Blom, D. A.; Gai, Z.; Thompson, J. R.;
Shen, J.; Dai, S. J. Am. Chem. Soc. 2003, 125, 7528-7529. (l) Xia, Y.
N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Mayers, B.; Gates, B.; Yin, Y.
D.; Kim, F.; Yan, Y. Q. AdV. Mater. 2003, 15, 353-389.
(2) Weller, D.; Doerner, M. F. Annu. ReV. Mater. Sci. 2000, 30, 611-644.
(3) Xu, Y.; Ruban, A. V.; Mavrikakis, M. J. Am. Chem. Soc. 2004, 126, 4717-
4725.
(4) Teng, X. W.; Yang, H. J. Am. Chem. Soc. 2003, 125, 14559-14563.
(5) Kang, S.; Harrell, J. W.; Nikles, D. E. Nano Lett. 2002, 2, 1033-1036.
(6) Reiss, B. D.; Mao, C. B.; Solis, D. J.; Ryan, K. S.; Thomson, T.; Belcher,
A. M. Nano Lett. 2004, 4, 1127-1132.
(7) Bonhote, P.; Dias, A. P.; Papageorgiou, N.; Kalyanasundaram, K.; Gratzel,
M. Inorg. Chem. 1996, 35, 1168-1178.
(8) Huddleston, J. G.; Visser, A. E.; Reichert, W. M.; Willauer, H. D.; Broker,
G. A.; Rogers, R. D. Green Chem. 2001, 3, 156-164.
(9) Dupont, J.; Fonseca, G. S.; Umpierre, A. P.; Fichtner, P. F. P.; Teixeira,
S. R. J. Am. Chem. Soc. 2002, 124, 4228-4229.
(10) Fonseca, G. S.; Umpierre, A. P.; Fichtner, P. F. P.; Teixeira, S. R.; Dupont,
J. Chem.-Eur. J. 2003, 9, 3263-3269.
(11) Huang, J.; Jiang, T.; Han, B. X.; Gao, H. X.; Chang, Y. H.; Zhao, G. Y.;
Wu, W. Z. Chem. Commun. 2003, 1654-1655.
(12) Scheeren, C. W.; Machado, G.; Dupont, J.; Fichtner, P. F. P.; Texeira, S.
R. Inorg. Chem. 2003, 42, 4738-4742.
(13) Zhou, Y.; Antonietti, M. J. Am. Chem. Soc. 2003, 125, 14960-14961.
(14) Zhu, Y. J.; Wang, W. W.; Qi, R. J.; Hu, X. L. Angew. Chem., Int. Ed.
2004, 43, 1410-1414.
(15) Kim, K. S.; Demberelnyamba, D.; Lee, H. Langmuir 2004, 20, 556-
560.
(16) Fredlake, C. P.; Crosthwaite, J. M.; Hert, D. G.; Aki, S.; Brennecke, J. F.
J. Chem. Eng. Data 2004, 49, 954-964.
(17) Fletcher, K. A.; Pandey, S. Langmuir 2004, 20, 33-36.
(18) Taubert, A. Angew. Chem., Int. Ed. 2004, 43, 5380-5382.
(19) (a) Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C.
T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.;
McCullen, S. B.; Higgins, J. B.; Schlenker, J. L. J. Am. Chem. Soc. 1992,
114, 10834-10843. (b) Huang, L. M.; Chen, X. Y.; Li, Q. Z. J. Mater.
Chem. 2001, 11, 610-615.
(20) The PXRD peak at 52° 2θ was most likely from the (440) plane of Co9S8
impurity. The source of sulfur element could be the [BMIM][Tf2N] ionic
liquid.
(21) Koper, O.; Winecki, S. Specific Heats and Melting Points of Nanocrys-
talline Materials. In Nanoscale Materials in Chemistry; Klabunde, K. J.,
Ed.; John Wiley & Sons: New York, 2001.
JA043625W
9
J. AM. CHEM. SOC. VOL. 127, NO. 15, 2005 5317