Paper
RSC Advances
their respective van der Waals radii. 2D ngerprint plots were hydrogen atoms were placed on calculated positions in riding
˚
generated using di and de in the translated 0.4–3.0 A range and mode with temperature factors xed at 1.2 times Ueq of the
including reciprocal contacts as a pair of coordinates in 2D parent atoms. Figures were generated using the program
histograms. A colour gradient in the ngerprint plots ranging Mercury.33
from blue to red is used to visualize the proportional contri-
bution of contact pairs in the global surface.
Crystal data for 2. C12H9BrN2O, Mr ¼ 277.12 g molꢁ1
,
monoclinic, space group P21/n, a ¼ 4.5103(3), b ¼ 19.8005(15), c
3
ꢀ
˚
˚
¼ 12.1942(8) A, b ¼ 95.592(7) , V ¼ 1083.84(13) A , T ¼ 297(2) K,
Z ¼ 4, r ¼ 1.698 g cmꢁ3, m(Mo-Ka) ¼ 3.770 mmꢁ1, reections:
10 312 collected, 1934 unique, Rint ¼ 0.043, R1(all) ¼ 0.0426,
wR2(all) ¼ 0.0979.
Enrichment ratio
The enrichment ratio (E)23 of a pair of elements (X, Y) is the ratio
between the proportion of actual contacts in the crystal and the
theoretical proportion of random contacts. E is larger than unity
for pairs of elements which have a high propensity to form
contacts in crystals, while pairs which tend to avoid contacts
with each other yield an E value lower than unity. E values are
calculated from the percentage of contacts, which, in turn, are
given by the CrystalExplorer 3.1 soware,21 between one type or
two types of chemical elements in a crystal packing.
Crystal data for 3. C12H9BrN2O, Mr ¼ 277.12 g molꢁ1
,
orthorhombic, space group Pca21, a ¼ 6.1946(6), b ¼ 7.0152(7), c
3
˚
˚
¼ 25.100(2) A, V ¼ 1090.76(17) A , T ¼ 293(2) K, Z ¼ 4, r ¼ 1.688
g cmꢁ3, m(Mo-Ka) ¼ 3.746 mmꢁ1, reections: 9101 collected,
2076 unique, Rint ¼ 0.047, R1(all) ¼ 0.0540, wR2(all) ¼ 0.1185.
Acknowledgements
This work was funded by the Fonds National de la Recherche
Scientique (FNRS) (PDR T.0102.15) and COST actions MP1202
and CA15128.
Synthesis of 1–3
A solution of 5-bromosalicylaldehyde (10 mmol, 2.010 g) dis-
solved in ethanol (20 mL) was added to a solution of 2-, 3- or 4-
aminopyridine (10 mmol, 0.941 g) in the same solvent (20 mL).
The mixture was stirred under reux for 0.5 h. The resulting
solution was allowed to cool to room temperature to give X-ray
suitable crystals of 1–3.
References
1 B. Moulton and M. J. Zaworotko, Chem. Rev., 2001, 101, 1629.
2 (a) J. M. Lehn, Supramolecular Chemistry, VCH, Weinheim,
Germany, 1995; (b) L. Brunsveld, B. J. B. Folmer,
E. W. Meijer and R. P. Sijbesma, Chem. Rev., 2001, 101, 4071.
3 G. A. Jeffery, An Introduction To Hydrogen Bonding, Oxford
University Press, 1997.
4 P. Metrangolo and G. Resnati, Halogen Bonding:
Fundamentals and Applications (Stucture and Bonding),
Springer, Heidelberg, 2010.
5 G. R. Desiraju, P. S. Ho, L. Kloo, A. C. Legon, R. Marquardt,
P. Metrangolo, P. Politzer, G. Resnati and K. Rissanen, Pure
Appl. Chem., 2013, 85, 1711.
6 T. Sakurai, M. Sundaralingam and G. A. Jeffrey, Acta
Crystallogr., 1963, 16, 354.
1. 1H NMR: d ¼ 6.92 (d, 3JH,H ¼ 8.8 Hz, 1H, 3-H, C6H3), 7.24 (t.
d, 3JH,H ¼ 7.8 Hz, 4JH,H ¼ 1.8 Hz, 1H, 5-H, Py), 7.32 (d, 3JH,H ¼ 7.9
Hz, 1H, 3-H, Py), 7.46 (d. d, 3JH,H ¼ 8.8 Hz, 4JH,H ¼ 2.3 Hz, 1H, 4-
H, C6H3), 7.59 (d, 4JH,H ¼ 2.3 Hz, 1H, 6-H, C6H3), 7.78 (t. d, 3JH,H
¼ 7.9 Hz, 4JH,H ¼ 1.8 Hz, 1H, 4-H, Py), 8.51 (d. d, 3JH,H ¼ 4.7 Hz,
4JH,H ¼ 1.2 Hz, 1H, 6-H, Py), 9.37 (s, 1H, arylCHN), 13.48 (s, 1H,
OH) ppm. Calc. for C12H9BrN2O (277.12): C 52.01, H 3.27; N
10.11. Found: C 52.12, H 3.32, N 10.16.
2. 1H NMR: d ¼ 6.93 (d, 3JH,H ¼ 8.8 Hz, 1H, 3-H, C6H3), 7.37
(d. d, 3JH,H ¼ 7.9 Hz, 4JH,H ¼ 3.2 Hz, 1H, 5-H, Py), 7.47 (d. d, 3JH,H
¼ 8.8 Hz, 4JH,H ¼ 2.1 Hz, 1H, 4-H, C6H3), 7.52 (d, 4JH,H ¼ 2.1 Hz,
1H, 6-H, C6H3), 7.58 (br. d, 3JH,H ¼ 7.9 Hz, 1H, 4-H, Py), 8.56 (br.
s, 3H, arylCHN + 2-H (Py) + 6-H (Py)), 12.76 (s, 1H, OH) ppm.
Calc. for C12H9BrN2O (277.12): C 52.01, H 3.27; N 10.11. Found:
C 51.92, H 3.36, N 10.19.
7 G. R. Desiraju and R. Parthasarathy, J. Am. Chem. Soc., 1989,
111, 8725.
8 (a) P. Metrangolo and G. Resnati, Chem. Commun., 2013, 49,
1783; (b) A. Mukherjee, S. Tothadi and G. R. Desiraju, Acc.
Chem. Res., 2014, 47, 2514; (c) G. Cavallo, P. Metrangolo,
R. Milani, T. Pilati, A. Priimagi, G. Resnati and
G. Terraneo, Chem. Rev., 2016, 116, 2478.
3. 1H NMR: d ¼ 6.95 (d, 3JH,H ¼ 8.8 Hz, 1H, 3-H, C6H3), 7.12
(d. d, 3JH,H ¼ 4.5 Hz, 4JH,H ¼ 1.5 Hz, 2H, 3-H + 5-H, Py), 7.50 (d. d,
3JH,H ¼ 8.8 Hz, 4JH,H ¼ 2.3 Hz, 1H, 4-H, C6H3), 7.54 (d, 4JH,H ¼ 2.3
Hz, 1H, 6-H, C6H3), 8.54 (s, 1H, arylCHN), 8.66 (d. d, 3JH,H ¼ 4.5
Hz, 4JH,H ¼ 1.5 Hz, 2H, 2-H + 6-H, Py), 12.57 (br. s, 1H, OH) ppm.
Calc. for C12H9BrN2O (277.12): C 52.01, H 3.27; N 10.11. Found:
C 52.09, H 3.20, N 10.04.
€
9 C. B. Aakeroy, M. Fasulo, N. Schultheiss, J. Desper and
C. Moore, J. Am. Chem. Soc., 2007, 129, 13772.
10 P. Metrangolo, G. Resnati, T. Pilati, R. Liantonio and
F. J. Meyer, J. Polym. Sci., Part A: Polym. Chem., 2007, 45, 1.
Single-crystal X-ray diffraction study
´
11 M. Fourmigue and P. Batail, Chem. Rev., 2004, 104, 5379.
X-ray data collection was performed on a Mar345 image plate 12 (a) E. Cariati, G. Cavallo, A. Forni, G. Leem, P. Metrangolo,
detector using Mo-Ka radiation (Zr-lter). The data were inte-
grated with the crysAlisPro soware.31 The implemented
empirical absorption correction was applied. The structures
were solved by direct methods using the SHELXS-97 program32
and rened by full-matrix least squares on |F2| using SHELXL-
97.32 Non-hydrogen atoms were anisotropically rened and the
F. Meyer, T. Pilati, G. Resnati, S. Righetto, G. Terraneo and
E. Tordin, Cryst. Growth Des., 2011, 11, 5642; (b)
A. Priimagi, G. Cavallo, P. Metrangolo and G. Resnati, Acc.
Chem. Res., 2013, 46, 2686; (c) N. Sassirinia, S. Amani,
S. J. Teat, O. Roubeau and P. Gamez, Chem. Commun.,
2014, 50, 1003.
This journal is © The Royal Society of Chemistry 2016
RSC Adv., 2016, 6, 53669–53678 | 53677