Journal of the American Chemical Society
Article
respectively (Ci = 17 nF/cm2). The substrate was cleaned by
ultrasonication in acetone and isopropyl alcohol for 30 min each
and dried under a flow of nitrogen gas. The substrate was further
cleaned using ozone-plasma for 5 min. A dilute chloroform solution
(0.1 M) of octyltrichlorosilane (OTS8) was spin-coated onto the
silicon dioxide layer at 3000 rpm in air for 10 s. The substrates were
then annealed for 10 min at 100 °C, washed with toluene, then
annealed for 10 min at 150 °C. The polymer semiconductors were
spin coated onto the OTS8 treated substrate from a solution in
chloroform (8 mg/mL) at 2000 rpm for 60 s in an argon-filled
glovebox. The films were annealed at 175 °C for 10 min, and then
source/drain electrodes were deposited via thermal evaporation of
silver (100 nm) that defined a channel width (W) of 1000 μm and
length (L) of 100 μm. Current−voltage characteristics of the
completed transistors were measured under nitrogen atmosphere
using a Signatone probe station and a semiconductor parameter
analyzer. The saturation region field-effect mobility (μ) and threshold
film-aged inside the glovebox at room temperature for 96 h (4 days)
followed by thermal vacuum deposition of LiF (1 nm)/Al (100 nm) or
Au (40 nm).
ASSOCIATED CONTENT
* Supporting Information
■
S
Synthesis of monomers and polymers, NMR spectra, AFM
images of surface morphology, output and transfer curves for
field-effect transistors, and SCLC device characteristics. This
material is available free of charge via the Internet at http://
AUTHOR INFORMATION
Corresponding Author
■
1/2
voltage (Vth) were calculated from plots of Ids vs Vgs in a forward
Notes
scan with Vds at 80 V by using the saturation-region transistor
The authors declare no competing financial interest.
equation: Ids= (μWCi)(Vgs − Vth)2/(2L).
Fabrication and Characterization of All-Polymer Solar Cells.
ITO glass substrates were cleaned sequentially in ultrasonic baths with
acetone and isopropyl alcohol for 20 min, dried using nitrogen gas, and
stored in a vacuum oven. The ITO glass substrate was O2 plasma
treated for 90 s right before coating the ZnO layer. The ZnO precursor
solution was spin-coated onto the ITO glass at 5000 rpm for 40 s,
annealed at 250 °C on a hot plate in air for 1 h to make 20−30 nm
thick ZnO layer, and the glass/ITO/ZnO substrate was transferred
into an argon-filled glovebox. A 1.0 vol % ethanolamine or 0.05 wt %
PEI in 2-methoxyethanol solution was spin-coated onto the ZnO layer
and dried at 110 °C on a hot plate for 10 min right before use. Each
active layer (PNDIS-HD:PBDTTT-CT or xPDI:PBDTTT-CT blend
(1:1 w/w) solution (25 mg/mL) in chlorobenzene with 3 vol % DIO
solvent additive was spin-coated at 1000 rpm for 20 s. After spin-
coating, the wet film was film-aged inside the glovebox at room
temperature for 96 h (4 days) followed by thermal vacuum deposition
of MoO3 (7.5 nm) and Ag anode (100 nm). All the active layers have
thicknesses of 90 10 nm. Five pixels, each with an active area of 4
mm2, were fabricated per ITO substrate. The photovoltaic cells were
tested under AM 1.5G solar illumination at 100 mW/cm2 in ambient
condition using a Solar Simulator (model 16S, Solar Light Co.,
Philadelphia, PA) with a 200 W xenon lamp power supply (Model
XPS 200, Solar Light Co., Philadelphia, PA) calibrated by NREL
certified Si photodiode (Model 1787−04, Hamamatsu Photonics K.K.,
Japan) and a HP4155A semiconductor parameter analyzer (Yokogawa
Hewlett-Packard, Japan). After the J−V measurement, the EQE was
measured by using a solar cell quantum efficiency measurement system
(Model QEX10, PV Measurements, Inc., Boulder, CO) with a 2 mm2
(2 × 1 mm) size masked incident light source and TF Mini Super
measurement apparatus for multiple devices in a single substrate. The
EQE system was calibrated with a Si photodiode before each
measurement.
ACKNOWLEDGMENTS
■
This work was supported by the NSF (DMR-1409687) and in
part by the Office of Naval Research (ONR) (N00014−11−1−
0317).
REFERENCES
■
(1) (a) Halls, J. J. M.; Walsh, C. A.; Greenham, N. C.; Marseglia, E.
A.; Friend, R. H.; Moratti, S. C.; Holmes, A. B. Nature 1995, 376, 498.
(b) Jenekhe, S. A.; Yi, S. J. Appl. Phys. Lett. 2000, 77, 2635. (c) Alam,
M. M.; Jenekhe, S. A. Chem. Mater. 2004, 16, 4647. (d) McNeill, C. R.
Energy Environ. Sci. 2012, 5, 5653.
(2) (a) Ahmed, E.; Ren, G.; Kim, F. S.; Hollenbeck, E. C.; Jenekhe, S.
A. Chem. Mater. 2011, 23, 4563. (b) Li, H.; Earmme, T.; Ren, G.;
Saeki, A.; Yoshikawa, S.; Murari, N. M.; Subramaniyan, S.; Crane, M.
J.; Seki, S.; Jenekhe, S. A. J. Am. Chem. Soc. 2014, 136, 14589. (c) Guo,
X.; Facchetti, A.; Marks, T. J. Chem. Rev. 2014, 114, 8943.
(3) (a) Schubert, M.; Dolfen, D.; Frisch, J.; Roland, S.; Steyrleuthner,
R.; Stiller, B.; Chen, Z.; Scherf, U.; Koch, N.; Facchetti, A.; Neher, D.
Adv. Energy Mater. 2012, 2, 369. (b) Zhou, E.; Cong, J.; Hashimoto,
K.; Tajima, K. Adv. Mater. 2013, 25, 6991. (c) Mori, D.; Benten, H.;
Okada, I.; Ohkita, H.; Ito, S. Energy Environ. Sci. 2014, 7, 2939.
(d) Hwang, Y. J.; Earmme, T.; Subramaniyan, S.; Jenekhe, S. A. Chem.
Commun. 2014, 50, 10801. (e) Mori, D.; Benten, H.; Okada, I.;
Ohkita, H.; Ito, S. Adv. Energy Mater. 2014, 4, 1301006. (f) Kang, H.;
Kim, K. H.; Choi, J.; Lee, C.; Kim, B. J. ACS Macro Lett. 2014, 3, 1009.
(g) Zhou, N.; Lin, H.; Lou, S. J.; Yu, X.; Guo, P.; Manley, E. F.; Loser,
S.; Hartnett, P.; Huang, H.; Wasielewski, M. R.; Chen, L. X.; Chang, R.
P. H.; Facchetti, A.; Marks, T. J. Adv. Energy Mater. 2014, 4, 1300785.
(h) Mu, C.; Liu, P.; Ma, W.; Jiang, K.; Zhao, J.; Zhang, K.; Chen, Z.;
Wei, Z.; Yi, Y.; Wang, J.; Yang, S.; Huang, F.; Facchetti, A.; Ade, H.;
Yan, H. Adv. Mater. 2014, 26, 7224.
(4) (a) Zhan, X.; Tan, Z.; Domercq, B.; An, Z.; Zhang, X.; Barlow, S.;
Li, Y.; Zhu, D.; Kippelen, B.; Marder, S. R. J. Am. Chem. Soc. 2007,
129, 7246. (b) Zhou, E.; Cong, J.; Wei, Q.; Tajima, K.; Yang, C.;
Hashimoto, K. Angew. Chem., Int. Ed. 2011, 50, 2799. (c) Zhou, Y.;
Yan, Q.; Zheng, Y. Q.; Wang, J. Y.; Zhao, D.; Pei, J. J. Mater. Chem. A
2013, 1, 6609. (d) Zhou, Y.; Kurosawa, T.; Ma, W.; Guo, Y.; Fang, L.;
Vandewal, K.; Diao, Y.; Wang, C.; Yan, Q.; Reinspach, J.; Mei, J.;
Appleton, A. L.; Koleilat, G. I.; Gao, Y.; Mannsfeld, S. C. B.; Salleo, A.;
Ade, H.; Zhao, D.; Bao, Z. Adv. Mater. 2014, 26, 3767. (e) Kozycz, L.
M.; Gao, D.; Tilley, A. J.; Seferos, D. S. J. Polym. Sci., Part A: Polym.
Chem. 2014, 52, 3337.
SCLC Measurement. Current−voltage (J−V) characteristics of the
SCLC devices were measured by using a HP4155A semiconductor
parameter analyzer (Yokogawa Hewlett-Packard, Tokyo). The carrier
mobility was extracted by fitting the J−V curves in the near quadratic
region according to the modified Mott−Gurney equation:25
⎛
⎞
⎟
9
8
V2
L3
V
L ⎠
J = εε0μ
exp 0.89β
⎜
⎝
where J is the current density, ε0 is the permittivity of free space, ε is
the relative permittivity, μ is the zero-field mobility, V is the applied
voltage, L is the thickness of active layer, and β is the field-activation
factor. The SCLC device structures for electron-only and hole-only
measurements were ITO/ZnO/active-layer/LiF/Al and ITO/PE-
DOT:PSS/active-layer/Au, respectively. Each active layer (PNDIS-
HD:PBDTTT-CT or xPDI:PBDTTT-CT blend (1:1 w/w)) solution
(25 mg/mL) in chlorobenzene with 3 vol % DIO solvent additive was
spin-coated at 1000 rpm for 20 s. After spin-coating, the wet film was
(5) (a) Kietzke, T.; Horhold, H. H.; Neher, D. Chem. Mater. 2005,
17, 6532. (b) Holcombe, T. W.; Woo, C. H.; Kavulak, D. F. J.;
Thompson, B. C.; Frechet, J. M. J. J. Am. Chem. Soc. 2009, 131, 14160.
(c) Mori, D.; Benten, H.; Ohkita, H.; Ito, S.; Miyake, K. ACS Appl.
Mater. Interfaces 2012, 4, 3325. (d) Guo, C.; Lin, Y. H.; Witman, M.
D.; Smith, K. A.; Wang, C.; Hexemer, A.; Strzalka, J.; Gomez, E. D.;
J
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX