Scheme 3 Proposed mechanisms for the Sonogashira coupling reaction and for the presented reaction of ethynyloxiranes.
7
8
(a) P. Bertus and P. Pale, Tetrahedron Lett., 1996, 37, 2019; (b) P.
Acknowledgement
Bertus and P. Pale, Tetrahedron Lett., 1997, 38, 8193; (c) P. Bertus
and P. Pale, J. Organomet. Chem., 1998, 567, 173.
(a) P. Bertus, U. Halbes and P. Pale, Eur. J. Org. Chem., 2001,
4391; (b) U. Halbes, P. Bertus and P. Pale, Tetrahedron Lett.,
2001, 42, 8641; (c) U. Halbes and P. Pale, Tetrahedron Lett.,
2002, 43, 2039.
`
P. B. thanks the ‘‘Ministere de l’Education Nationale, de
l’Enseignement Superieur et de la Recherche’’ for a doctoral
´
fellowship. P. P. thanks the Institut Universitaire de France
for financial support.
9
P. Bertus, S. Dillinger and P. Pale, Org. Lett., 2001, 3, 1661.
10 R. S. Reddy, S. Igushi, S. Kobayashi and M. Hirama, Tetrahedron
Lett., 1996, 37, 9335.
11 (a) B. M. Trost, G. H. Kuo and T. Benneche, J. Am. Chem. Soc.,
References
1988, 110, 621; (b) G. Ja¨hne, A. Muller, H. Kroha, M. Ro¨sner, O.
¨
1
2
K. Sonogashira, Y. Tohda and N. Hagihara, Tetrahedron Lett.,
1975, 4467.
Holzha¨user, C. Meischsner, M. Helsberg, I. Winkler and G. Riess,
Tetrahedron Lett., 1992, 33, 5335.
(a) V. Ratovelomanana and G. Linstrumelle, Tetrahedron Lett.,
1981, 22, 315; (b) V. Ratovelomanana and G. Linstrumelle,
Tetrahedron Lett., 1984, 25, 6001; (c) M. Alami, F. Ferri and
G. Linstrumelle, Tetrahedron Lett., 1993, 34, 6403.
K. Sonogashira, in Comprehensive Organic Synthesis, eds.
B. M. Trost and I. Fleming, Pergamon, Oxford, 1991, vol. 3,
pp. 521–549.
K. Sonogashira, in Comprehensive Functional Group Transforma-
tions, eds. A. Katritzky and C. Rees, Pergamon, Oxford, 1995,
vol. 1, pp. 995.
(a) R. Crabtree, The Organometallic Chemistry of the Transition
Metals, Wiley, New York, 1988; (b) For a more detailed analysis,
see: C. Amatore, A. Jutand and A. Suarez, J. Am. Chem. Soc.,
1993, 115, 9531; C. Amatore and A. Jutand, Acc. Chem. Res.,
2000, 33, 314.
(a) I. E. Campbell, in Organocopper Reagents, A Practical
Approach, ed. R. J. K. Taylor, Oxford University Press, Oxford,
1994, pp. 217–235; (b) L. Hegedus, Transition Metals in the Synth-
esis of Complex Organic Molecules, 2nd edn., University Science
Books, Sausalito, CA, USA, 1999, p. 91.
12 (a) M. S. Malinovskii, N. G. Krivosheeva, M. P. Khmel, A. G.
Yudasina and V. G. Dryuk, Ukr. Khim. Zh., 1973, 39, 1257; (b)
F. Y. Perveev, L. N. Shil’nikova and R. Y. Irgal, Zh. Org. Khim.,
1969, 5, 1373; (c) H. Galons, J. F. Girardeau, C. Combet-
Farnoux, M. Miocque, C. Dupont and J. Wepierre, Eur. J.
Med. Chem., 1979, 14, 165.
3
4
5
13 J. F. Normant, Synthesis, 1972, 70.
14 Two competitive mechanisms may contribute to SN02 substitu-
tions, leading to stereoisomers. See: A. Alexakis, I. Marek,
P. Mangeney and J. F. Normant, Tetrahedron, 1991, 47, 1677.
15 (a) P. R. Ortiz de Montellano, J. Chem. Soc., Chem. Commun.,
1973, 710; (b) P. Vermeer, J. Meijer, C. De Graaf and H. Schreurs,
Rec. Trav. Chim. Pays-Bas, 1974, 94, 46; (c) R. Epsztein and N. Le
Goff, J. Chem. Soc., Chem. Commun., 1977, 679; (d ) C. Cahiez, A.
Alexakis and J. F. Normant, Synthesis, 1978, 528; (e) A.
Doutheau, A. Saba and J. Gore, Tetrahedron Lett., 1982, 23,
2461; ( f ) N. Krause, A. Hoffmann-Ro¨der and J. Canisius,
Synthesis, 2002, 1759.
6
16 Depending on the exact mechanism, diastereoisomers can be
produced. See ref. 14.
T h i s j o u r n a l i s Q T h e R o y a l S o c i e t y o f C h e m i s t r y a n d t h e
C e n t r e N a t i o n a l d e l a R e c h e r c h e S c i e n t i f i q u e 2 0 0 4
14
N e w . J . C h e m . , 2 0 0 4 , 2 8 , 1 2 – 1 4