B. S. Lee et al. / Tetrahedron Letters 46 (2005) 4501–4503
4503
Table 1. Ring-closing metathesis of dienes 9a–c
J. J.; Mearns, F.; Yang, W.; Liu, J. Electroanalysis 2003,
15, 81; (c) Katz, E.; Willner, I. Angew. Chem., Int. Ed.
2004, 43, 6042.
2. Shon, Y.-S.; Choo, H. D.K.P.Ng CR. Chimie 2003, 6,
1009, and references cited therein.
Catalyst (5 mol%)
CH2Cl2, 40 o
C
n
n
n
n
N
N
N
N
3. (a) Bartz, M.; Kuther, J.; Seshadri, R.; Tremel, W. Angew.
¨
Ts
Ts
Ts
Ts
Chem., Int. Ed. 1998, 37, 2466; (b) Li, H.; Luk, Y.-Y.;
Mrksich, M. Langmuir 1999, 15, 4957; (c) Marubayashi,
K.; Takizawa, S.; Kawakusu, T.; Arai, T.; Sasai, H. Org.
Lett. 2003, 5, 4409.
9a: n = 1
10a: n = 1
10v n = 2
9c
10c
9b: n = 2
Entry
Cycle
Cat.
9
Conv (%)a
1b
2c
1st
1st
1b
8
9a
9a
>98
>98
4. (a) Schwab, P.; France, M. B.; Ziller, J. W.; Grubbs, R. H.
Angew. Chem., Int. Ed. Engl. 1995, 34, 2039; (b) Schwab,
P.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem. Soc. 1996,
118, 100; (c) Kingsbury, J. S.; Harrity, J. P. A.; Bonitate-
bus, P. J.; Hoveyda, A. H. J. Am. Chem. Soc. 1999, 121,
791; (d) Garber, S. B.; Kingsbury, J. S.; Gray, B. L.;
Hoveyda, A. H. J. Am. Chem. Soc. 2000, 122, 8168.
5. (a) Nguyen, S. T.; Grubbs, R. H. J. Organomet. Chem.
1995, 497, 195; (b) Ahmed, M.; Barrett, A. G. M.;
Braddock, D. C.; Cramp, S. M.; Procopiou, P. A.
3d
4
1st
MPC-7
MPC-7
MPC-7
MPC-7
MPC-7
MthPC-7
MPC-7
9a
9a
9a
9a
9a
9a
9a
>98
>98
>98
98
2nd
3rd
5
64th
7
5th
6
85
80
8
9e
7th
20
10
11
1st
1st
MPC-7
MPC-7
9b
9c
>98
>98
Tetrahedron Lett. 1999, 40, 8657; (c) Schurer, S. C.;
¨
Gessler, S.; Buschmann, N.; Blechert, S. Angew. Chem.,
Int. Ed. 2000, 39, 3898; (d) Jafarpour, L.; Nolan, S. P. Org.
Lett. 2000, 2, 4075; (e) Kingsbury, J. S.; Garber, S. B.;
Giftox, J. M.; Gray, B. L.; Okamoto, M. M.; Farrer, R.
A.; Fourkas, J. T.; Hoveyda, A. H. Angew. Chem., Int. Ed.
2001, 40, 4251; (f) Yao, Q. Angew. Chem., Int. Ed. 2000,
39, 3896; (g) Connon, S. J.; Dunne, A. M.; Blechert, S.
Angew. Chem., Int. Ed. 2002, 41, 3835; (h) Yao, Q.; Motta,
A. R. Tetrahedron Lett. 2004, 45, 2447.
a Determined by 1H NMR and reactions carried out for 1.5 h otherwise
noted.
b Reaction carried out for 3 h.
c Reaction carried for 30 min.
d For entries 3–8, the catalyst was recovered for the next run.12
e Reaction carried for 12 h.
activity. Finally, we examined the catalytic activity of
the MPC-7 for other substrates 9b and c, and afforded
the corresponding products 10b (entry 10) and c (entry
11) in quantitative yields.
6. (a) Garber, S. B.; Kingsbury, J. S.; Gray, B. L.; Hoveyda,
A. H. J. Am. Chem. Soc. 2000, 122, 8168; (b) Gatard, S.;
Nlate, S.; Cloutet, E.; Bravic, G.; Blais, J.-C.; Astruc, D.
Angew. Chem., Int. Ed. 2003, 125, 452.
7. (a) Yao, Q.; Zhang, Y. Angew. Chem., Int. Ed. 2003, 42,
3395; (b) Audic, N.; Clavier, H.; Mauduit, M.; Guillemin,
J.-C. J. Am. Chem. Soc. 2003, 125, 452.
8. Yao, Q.; Zhang, Y. J. Am. Chem. Soc. 2004, 126, 74.
9. Yokokawa, S.; Tamada, K.; Ito, E.; Hara, M. J. Phys.
Chem. B 2003, 107, 3544.
In conclusion, we have synthesized a novel monolayer-
protected gold nanoparticles-bound Ru–carbene com-
plex MPC-7, which showed high reactivity and high
levels of reusability in ring-closing olefin metathesis
suggesting that the monolayer-protected nanoparticles
could have a high potential as support-materials for
the recyclable catalysts. Studies on MPC-supported cat-
alysts for other catalytic reactions are under progress.
10. Hostetler, M. J.; Wingate, J. E.; Zhong, C.-J.; Harris, J.
E.; Vachet, R. W.; Clark, M. R.; Londono, J. D.; Green,
S. J.; Stokes, J. J.; Wignall, G. D.; Glish, G. L.; Porter, M.
D.; Evans, N. D.; Murray, R. W. Langmuir 1998, 14, 17.
11. The ratio of 3:1 was determined by comparing the
integrated areas for the vinyl protons of 4b and the
poly(methylene) chains for both 4b and octanethiolate.
12. The dichloromethane solvent was removed, and the
product 10a was dissolved in methanol, and the precip-
itated MPC-7 was isolated, dried, and used for the next
run.
13. In UV–vis absorption spectra (1 mg sample in 10 mL of
CH2Cl2) of the MPC-7 recovered until 6th cycle, the kmax
(ꢀ520 nm) and absorbance (0.60) were almost retained.
However, no kmax could be observed from the MPC-7
after 7th cycle, which may be largely due to the poorer
solubility by the formation of aggregates as they demon-
strated in TEM.
Acknowledgements
The authors thank financial support from National Re-
search Laboratory and Future Core Technology Pro-
gram at KIST, Center for Molecular Design and
Synthesis at KAIST.
References and notes
1. Reviews, see: (a) Templeton, A. C.; Wuelfing, W. P.;
Murray, R. W. Acc. Chem. Res. 2000, 33, 27; (b) Gooding,