C O MMU N I C A T I O N S
that asm16 may play a role in activating a precursor molecule,
perhaps loading an acyl compound onto the ACP encoded by asm14
for ansamitocin biosynthesis. It also raises the possibility that
O-methylation catalyzed by Asm17 may occur early in the
elaboration of this unusual chain extension substrate.
Acknowledgment. This work was supported by NIH research
Grant CA 76461 and by a postdoctoral fellowship from the
Deutscher Akademischer Austauschdienst (to S.T.).
Figure 2. Organization of genes putatively involved in the formation of
the novel hydroxylated 2-carbon extender unit in four biosynthetic gene
clusters: asm (AF453501), ansamitocin from A. pretiosum; fkb (AF235504),
FK520 from S. hygroscopicus; sor (U24241), soraphen from Polyangium
cellulosum; zma (AF155831), zwittermicin from Bacillus cereus. The
abbreviations of gene or domain homologues are as follows: BADH,
Supporting Information Available: Experimental procedures for
the synthesis of 2-hydroxymalonyl-SNAC and 2-methoxymalonyl-
SNAC and description of the construction of the asm14 and asm15
mutants of A. pretiosum (PDF). This material is available free of charge
via the Internet at http://pubs.acs.org.
3
-hydroxyacyl-CoA dehydrogenase; ACP, acyl or peptidyl carrier protein;
ADH, acyl-CoA dehydrogenase; MT, O-methyltransferase; AT, acyltrans-
ferase. Note that the zma cluster has only been partially sequenced.
References
(
(
(
1) Higashide, E.; Asai, M.; Ootsu, K.; Tanida, S.; Kozai, Y.; Hasegawa, T.;
Kishi, T.; Sugino, Y.; Yoneda, M. Nature 1977, 270, 721-722.
2) Asai, M.; Mizuta, E.; Izawa, M.; Haibara, K.; Kishi, T. Tetrahedron 1979,
35, 1079-1085.
(
asm15/fkbI) to acyl-CoA dehydrogenases, as well as a methyl-
transferase gene (asm17/fkbG) and an ORF (asm16/fkbH) of
unknown function (Figure 2). This led to the suggestion that these
five genes control the formation of 2-methoxymalonyl-ACP, the
proposed substrate for the “glycolate” extender unit, from glycolytic
intermediates via an ACP-bound glycerate.16 To probe the role of
these genes, we inactivated asm15 in the A. pretiosum genome by
inserting an apramycin resistance gene, aac(3)IV. The mutant did
not produce any ansamitocin P-3, even when supplemented with
isobutyrate, indicating that asm15 is required for formation of the
ansamitocin backbone rather than the ester side chain. Feeding with
3) (a) Komoda, Y.; Kishi, T. In Anticancer Agents Based on Natural Product
Models; Douros, J., Cassady, J. M., Eds.; Academic Press: New York,
1980; pp 353-389. (b) Smith, C. R., Jr.; Powell, R. G. In Alkaloids;
Pelletier, S. W., Ed.; J. Wiley & Sons: New York, 1984; Vol. 2, pp 149-
204.
(
4) Hatano, K.; Akiyama, S.-I.; Asai, M.; Rickards, R. W. J. Antibiot. 1982,
35, 1415-1417.
(
5) Hatano, K.; Mizuta, E.; Akiyama, S.-I.; Higashide, E.; Nakao, Y. Agric.
Biol. Chem. 1985, 49, 327-333.
(6) Haber, A.; Johnson, R. D.; Rinehart, K. L., Jr. J. Am. Chem. Soc. 1977,
99, 3541-3542.
(7) Omura, S.; Tsuzuki, K.; Nakagawa, A.; Lukacs, G. J. Antibiot. 1983, 36,
611-613.
2
-hydroxymalonyl-SNAC or 2-methoxymalonyl-SNAC did not
(8) Byrne, K. M.; Shafiee, A.; Nielsen, J. B.; Arison, B.; Monaghan, R. L.;
Kaplan, L. DeV. Ind. Microbiol. 1993, 32, 29-45.
restore ansamitocin formation. Analysis of the fermentation of the
asm15 mutant revealed the presence of a small amount of a new
compound, not detected in the wild-type fermentation, which was
shown to have the structure of 10-desmethoxy-ansamitocin P-3
(
9) (a) Schupp. T.; Toupet, C.; Cluzel, B.; Neff, S.; Hill, S.; Beck, J. J.; Ligon,
J. M. J. Bacteriol. 1995, 177, 3673-3679. (b) Hill, A. M.; Harris, J. P.;
Siskos, A. P. J. C. S., Chem. Commun. 1998, 2361-2362.
(
10) Ono, M.; Sakuda, S.; Ikeda, H.; Furihata, K.; Nakayama, J.; Suzuki, A.;
Isogai, A. J. Antibiot. 1998, 51, 1019-1028.
Figure 1).1
8,19
(11) Stohl, E. A.; Milner, J. L.; Handelsman, J. Gene 1999, 237, 403-411.
(
Evidently, this compound results from the, albeit
(
(
12) Bindseil, K. U.; Zeeck, A. Liebigs Ann. Chem. 1994, 305-312.
13) (a) Yue, S.; Duncan, J. S.; Yamamoto, Y.; Hutchinson, C. R. J. Am. Chem.
Soc. 1987, 109, 1253-1255. (b) Cane, D. E.; Yang, C. J. Am. Chem.
Soc. 1987, 109, 1255-1257.
inefficient, incorporation of a malonate unit in the absence of the
substrate for the “glycolate”extender unit. This clearly demonstrates
that asm15, and probably others of the asm13-17 genes, must be
involved in the synthesis of the unusual “glycolate” unit and its
delivery to the PKS. Interestingly, no 10-desmethoxy-ansamitocin
P-3 was detected in the fermentation of the asm14 mutant. This
suggests that the ACP encoded by asm14 is required for the aberrant
incorporation of a malonate unit in the third chain extension step,
for example, to maintain the PKS in a functionally competent
conformation or to actually deliver the malonate to the AT3 on the
PKS.
The above results indicate that the substrate for the unusual chain
extension reaction incorporating a “glycolate” unit into ansamitocin
and other antibiotics is most likely either 2-hydroxy- or 2-meth-
oxymalonyl-ACP rather than the corresponding CoA thioester. The
asm13-17 operon is probably responsible for the formation of this
substrate from an unidentified intermediate of carbohydrate me-
tabolism. It is noteworthy that the homologues of asm16/fkbH
(
14) Pohl, N. L.; Gokhale, R. S.; Cane, D. E.; Khosla, C. J. Am. Chem. Soc.
1998, 120, 11206-11207.
15) Yu, T.-W.; Bai, L.; Clade, D.; Hoffmann, D.; Toelzer, S.; Trinh, K. Q.;
Xu, J.; Moss, S.; Leistner, E.; Floss, H. G. Proc. Natl. Acad. Sci. U.S.A.
In press.
(
(16) Wu, K.; Chung, L.; Revill, W. P.; Katz, L.; Reeves, C. D. Gene 251,
81-90.
(
17) Lambalot, R. H.; Gehring, A. M.; Flugel, R. S.; Zuber, P.; LaCelle, M.;
Marahiel, M. A.; Khosla, C.; Walsh, C. T. Chem. Biol. 1996, 3, 923-
9
36.
(
18) 10-Desmethoxy-ansamitocin: 1H NMR (499 MHz, CD
3
OD), δ (ppm) 0.90
), 1.23 (3H, d, 6.5 Hz, 2′-CH ), 1.41
), 1.52 (1H, bdd, 13.0 Hz, H-8b), 1.55 (1H, m, H-6), 1.70
3H, bs, 14-CH ), 1.71 (1H, dd, 14.0, 3.0 Hz, H-8a), 2.15 (1H, m, 14.0,
.0 Hz, H-2b), 2.20 (1H, m, 11.0 Hz, H-10b), 2.65 (1H, m, 14.0 Hz,
H-2a), 2.68 (1H, m, 8.5, 4.0 Hz, H-10a), 2.74 (1H, m, H-2′), 2.82 (1H,
bd, 9.5 Hz, H-5), 3.14 (3H, s, NCH ), 3.3 (1H, obsc., H-15b), 3.5 (1H,
obsc., H-15a), 3.98 (3H, s, OCH ), 4.19 (1H, bt, 11.0 Hz, H-7), 4.70 (1H,
dd, 12.0, 2.5 Hz, H-3), 5.67 (1H, ddd, 15.0, 10.5, 4.5 Hz, H-11), 6.18
1H, bd, 10.5 Hz, H-13), 6.40 (1H, dd, 15.0, 11.0 Hz, H-12), 6.97 (1H,
(
(
(
3H, s, 4-CH
3
), 1.22 (3H, d, 2′-CH
3
3
3
3H, bs, 6-CH
3
2
3
3
(
13
s, H-21), 7.14 (1H, s, H-17). C NMR (125.7 MHz, CD
3
OD), δ (ppm)
), 20.9 (2′-CH ),
), 39.5 (c-8), 39.8 (C-6), 47.0 (C-
), 62.1 (C-4), 68.2 (C-5), 76.3 (C-7), 78.1
12.8 (4-CH
3
1
3
), 15.0 (6-CH
3.9 (C-3), 35.1 (C-2′), 36.3 (N-CH
0), 47.5 (C-15), 57.4 (O-CH
3
), 15.9 (14-CH
3
), 18.6 (2′-CH
3
3
3
(
unknown) and asm17/fkbG (methyltransferase) are not present in
3
the putative hydroxy/methoxymalonate subcluster of the soraphen
biosynthetic gene cluster. Instead, a gene, sorC, encoding a three-
domain protein encompassing an acyltransferase, an ACP, and a
methyltransferase, has been identified immediately upstream of sorD
(C-3), 81.2 (C-9), 115.0 (C-21), 120.0 (C-19), 123.1 (C-17), 126.8 (C-
1
1
3), 128.1 (C-11), 132.8 (C-12), 138.6 (C-14), 143. 2 (C-18), 143.3 (C-
6), 155.7 (OCONH), 157.8 (C-20), 171.6 (C-1), 177.9 (C-1′).
(
19) An unusual feature of the ansamitocin structure is the location of the double
bonds at ∆11, 12, and ∆13, 14 instead of ∆10, 11, and ∆12, 14 where
normal PKS processing would place them. This implies that a double
bond shift must occur during the biosynthesis. The structure of the product
from the asm15 mutant indicates that this double bond shift is not
dependent on the presence of the 10-methoxy group
(
Figure 2). Such AT/ACP pairs combined with other genes have
recently been shown to be involved in the activation and modifica-
tion of amino acids,2 suggesting that sorC may be involved in
activating and methylating a precursor of the hydroxy/methoxy-
malonate moiety, which is then converted into methoxymalonyl-
ACP by the action of the sorDEX gene products. This suggests
0,21
(
20) Chen, H.; Thomas, M. G.; O’Connor, S. E.; Hubbard, B. K.; Burkart, M.
D.; Walsh, C. T. Biochemistry 2001, 40, 11651-11659.
(
21) Chen, H.; Walsh, C. T. Chem. Biol. 2001, 8, 301-312.
JA0124764
J. AM. CHEM. SOC.
9
VOL. 124, NO. 16, 2002 4177