Table 6 Data collection and refinement statistics for the ANS–Fe(II)–
concentration of 10% (v/v) MeOH), pH 6.5. The crystals
were immersed in mother liquor supplemented with 10% (v/v)
2
OG–naringenin structure (PDB id code: 2brt)
ethylene glycol and flash cooled in liquid N . Diffraction data
were collected at 100 K using beamline 14.2 (SRS, Daresbury
Laboratory, UK) with an ADSC Quantum4 CCD detector
2
Space group
1 1 1
P2 2 2
2.2 (2.31–2.2)
56.8
62.3
102.5
109 275
18 607
0.082 (0.606)
98.0 (99.5)
15.8 (3.1)
0.211
Resolution/A˚
Unit cell/A˚
a
b
c
(
Table 6). The data were processed using MOSFLM and SCALA
29
(CCP4 suite ).
Total reflections
Unique reflections
Acknowledgements
a
R
merge (%)
Completeness (%)
We thank the Biotechnology and Biological Sciences Research
Council (Biomolecular Sciences Committee) and the Engineer-
ing and Physical Sciences Research Council for funding. We
thank Dr J. L. Firmin (John Innes Centre, Norwich, UK) for
providing the purified 2S- and 2R-naringin.
I/r
I
R
R
free
0.268
Mean B-values/ A˚ 2
Main chain
Side chain
Substrates
Iron
47.3
48.0
52.3
31.7
47.8
References
Solvent
1
2
3
4
5
6
7
8
9
B. A. Bohm, Introduction to Flavonoids, Harwood Academic Pub-
lishers, Amsterdam, 1998.
G. Forkmann and W. Heller, Comprehensive Natural Products
Chemistry, Elsevier Science, Amsterdam, 1999, pp. 713–748.
K. Springob, J. Nakajima, M. Yamazaki and K. Saito, Nat. Prod.
Rep., 2003, 20, 288–303.
RMS deviations from ideal
Bonds/A˚
0.025
1.89
128
◦
Angles/
No. solvent molecules
a
R
merge = R
j
R
h
|Ih,j − ꢁI
h
ꢂ|/R
j
R
h
ꢁI ꢂ × 100 (outer resolution shell statistics
h
S. Martens, G. Forkmann, L. Britsch, F. Wellmann, U. Matern and
R. Lukacin, FEBS Lett., 2003, 544, 93–8.
shown in parentheses).
R. Lukacin, C. Urbanke, I. Groning and U. Matern, FEBS Lett.,
2
000, 467, 353–8.
Substrate synthesis
A. G. Prescott, N. P. Stamford, G. Wheeler and J. L. Firmin,
Phytochemistry, 2002, 60, 589–93.
2
R-13 and 2S-naringenin 3 were produced by naringinase
R. Lukacin, F. Wellmann, L. Britsch, S. Martens and U. Matern,
Phytochemistry, 2003, 62, 287–92.
K. Saito, M. Kobayashi, Z. Gong, Y. Tanaka and M. Yamazaki,
Plant J., 1999, 17, 181–9.
J. J. Turnbull, W. J. Sobey, R. T. Aplin, A. Hassan, J. L. Firmin, C. J.
Schofield and A. G. Prescott, Chem. Commun., 2000, 2473–4.
mediated cleavage of the glycosidic bond of 2R- and 2S-naringin
23
as described.
1
H NMR scale naringenin incubations
Assays were carried out as 18 × 0.5 ml aliquots for 45 minutes,
1
1
0 M. Costas, M. P. Mehn, M. P. Jensen and L. Que, Jr., Chem. Rev.,
004, 104, 939–86.
then combined and loaded onto an SPE column (Strata C-18E,
2
5
00 mg). The cofactors were eluted using 8 ml 5% MeOH (v/v);
DHK 5/10/11 with 4 ml 40% MeOH (v/v); and naringenin 3/13
apigenin 4 with 60% MeOH (v/v). The H NMR (500 MHz)
1 R. P. Hausinger, Crit. Rev. Biochem. Mol. Biol., 2004, 39, 21–68.
12 J. C. Price, E. W. Barr, B. Tirupati, J. M. Bollinger, Jr. and C. Krebs,
1
Biochemistry, 2003, 42, 7497–508.
3 D. A. Proshlyakov, T. F. Henshaw, G. R. Monterosso, M. J. Ryle and
R. P. Hausinger, J. Am. Chem. Soc., 2004, 126, 1022–3.
1
1
spectra were assigned by comparison to standards (including
doping experiments) and couplings confirmed by COSY spectra.
4 P. J. Riggs-Gelasco, J. C. Price, R. B. Guyer, J. H. Brehm, E. W.
Barr, J. M. Bollinger, Jr. and C. Krebs, J. Am. Chem. Soc., 2004, 126,
1
1
For chiral H NMR analyses, after the initial H spectra had been
recorded, Eu(hfc)
3
-(+) was added portion wise (2 × 85 nmol,
8
108–9.
1
1
× 170 nmol) from a 40 mM solution with a H NMR spectrum
15 L. Britsch, Arch. Biochem. Biophys., 1990, 282, 152–60.
16 R. W. D. Welford, J. J. Turnbull, T. D. W. Claridge, A. G. Prescott
and C. J. Schofield, Chem. Commun., 2001, 1828–9.
recorded after each addition. Selected data as follows:
Naringenin 3/13; d (500 MHz; CD CN): 2.8 (dd, 1H, J 3.0
H
3
1
1
1
7 J. J. Turnbull, M. J. Nagle, J. F. Seibel, R. W. D. Welford, G. H. Grant
and C. J. Schofield, Bioorg. Med. Chem. Lett., 2003, 13, 3853–7.
8 R. C. Wilmouth, J. J. Turnbull, R. W. D. Welford, I. J. Clifton, A. G.
Prescott and C. J. Schofield, Structure, 2002, 10, 93–103.
9 E. N. Marsh, M. D. Chang and C. A. Townsend, Biochemistry, 1992,
31, 12648–57.
1
1
(
[
7.0, H-3), 3.1 (dd, 1H, J 13.0 17.0, H-3), 5.3 (dd, 1H, J 3.0
3.0, H-2), 5.8 (2d, 2H, J 2.1, H-6 H-8), 6.75 (d, 2H, J 8.5), 7.3
d, 2H, J 8.5); kmax: 291.4 nm; m/z (ESI-MS negative ion mode):
−
M − H] 271.0.
Apigenin 4; d
H
(500 MHz; CD
3
CN): 6.3 (d, 1H, J 2.0), 6.55
(
d, 1H, J 2.0), 6.65 (s, 1H, H-3), 7.0 (d, 2H, J 9.0), 8.0 (d, 2H,
20 Z. H. Zhang, J. S. Ren, D. K. Stammers, J. E. Baldwin, K. Harlos
and C. J. Schofield, Nat. Struct. Biol., 2000, 7, 127–33.
21 M. D. Lloyd, K. D. Merritt, V. Lee, T. J. Sewell, B. Wha-Son, J. E.
Baldwin, C. J. Schofield, S. W. Elson, K. H. Baggaley and N. H.
Nicholson, Tetrahedron, 1999, 55, 10201–20.
J 9.0); kmax: 337.9 nm; m/z (ESI-MS negative ion mode): [M −
−
H] 269.0.
trans-DHK 5/11; d
H-3), 5.0 (d, 1H, J 11.5 H-2); kmax: 292.4 nm; m/z (ESI-MS
H
(500 MHz; CD CN): 4.6 (d, 1H, J 11.5,
3
2
2 J. E. Baldwin and M. Bradley, Chem. Rev., 1990, 90, 1079–88.
−
negative ion mode): [M − H] 287.0.
23 J. J. Turnbull, J. Nakajima, R. W. D. Welford, M. Yamazaki, K. Saito
cis-DHK 10; d
H
(500 MHz): 4.3 (d, 1H, J 3.0, H-3), 5.45 (d,
and C. J. Schofield, J. Biol. Chem., 2004, 279, 1206–16.
2
2
4 E. Kiehlmann and E. P. M. Li, J. Nat. Prod., 1995, 58, 450–5.
5 J. C. Price, E. W. Barr, T. E. Glass, C. Krebs and J. M. Bollinger, Jr.,
J. Am. Chem. Soc., 2003, 125, 13008–9.
1
7
1
H, J 3.0, H-2), 6.0 (2d, 2H, J 2.2, H-6 8), 6.85 (d, 2H, J 8.5),
(500 MHz):
.35 (d, 2H, J 8.5); + 380 nmol Eu(hfc)
3
-(+); d
H
1.75 (s, 1H); kmax: 292.4 nm; m/z (ESI-MS negative ion mode):
2
6 J. E. Baldwin, R. M. Adlington, N. P. Crouch, J. W. Keeping, S. W.
Leppard, J. Pitlik, C. J. Schofield, W. J. Sobey and M. E. Wood,
J. Chem. Soc., Chem. Commun., 1991, 768–70.
−
[
M − H] 287.0.
Eriodictyol 14 assay; trans-DHQ; m/z (ESI-MS negative ion
−
mode): [M − H] 303.0; kmax: 290.2 nm. cis-DHQ; m/z (ESI-MS
27 M. D. Lloyd, H. J. Lee, K. Harlos, Z. H. Zhang, J. E. Baldwin,
C. J. Schofield, J. M. Charnock, C. D. Garner, T. Hara, A. C. T. van
Scheltinga, K. Valegard, J. A. C. Viklund, J. Hajdu, I. Andersson, A.
Danielsson and R. Bhikhabhai, J. Mol. Biol., 1999, 287, 943–60.
−
negative ion mode): [M − H] 303.0; kmax: 290.2 nm.
Crystals of (± )-naringenin 3/13 complexed with ANS–Fe(II)–
2
OG were grown from a solution of 18% (w/v) PEG 2000
2
8 J. J. Turnbull, A. G. Prescott, C. J. Schofield and R. C. Wilmouth,
Acta Crystallogr., Sect. D: Biol. Crystallogr., 2001, 57, 425–7.
monomethylether, 50 mM MES, 200 mM ammonium acetate,
mM FeSO , 10 mM potassium 2OG, 10 mM sodium ascorbate
2
4
29 Collaborative Computational Project Number 4, Acta Crystallogr.,
Sect. D: Biol. Crystallogr., 1994, 50, 760–763.
and 2.5 mM (± )-naringenin 3/13 (in MeOH to give a final
3
1 2 6
O r g . B i o m o l . C h e m . , 2 0 0 5 , 3 , 3 1 1 7 – 3 1 2 6