C O M M U N I C A T I O N S
Scheme 2. Synthesis of Bifunctional Dendrimer 7a
Table 1. Reactions of Cyclic Carbonate Dendrimer 5a
time
(h)
conversionb
(%)
yieldc
(%)
entry
reagent
6a
6a
6b
6b
6c
6d
6e
6f
benzylamine
benzylamine
sec-butylamine
sec-butylamine
piperidine
aniline
phenol
benzyl alcohol
propargylamine
(MeO)2CHCH2NH2
tyramine
1
3
3
16
1
16
16
16
16
16
16
63
95-99
26
90
95-99
13
7
12
95-99
95-99
95-99
-
92
-
74
96
-
-
-
a Reagents and conditions: (a) 1,1′-carbonyldiimidazole in CH2Cl2, 1
h, then propargylamine, 16 h, 80%.
6g
6h
6i
89
91
94
Acknowledgment. The authors thank NIH (R01-EB002047) for
funding. S.S.L. thanks NSF for a summer research stipend.
Supporting Information Available: Experimental procedures and
characterization data. This material is available free of charge via the
a Performed in 1:1 pyridine/THF. b Conversion per carbonate measured
1
by H NMR. c Dendrimer yield after workup.
sponding to acyclic carbonates, as would be expected if the phenol
had reacted with the cyclic carbonates, and peak integration data
for the carbamate peaks were consistent with those of the inner
dendrimer framework. Reaction of 5 with propargylamine, intended
to provide a dendrimer with alkynes for click chemistry,19 also met
with similar success, affording 6g. Finally, reaction with aminoac-
etaldehyde dimethyl acetal gave a 90% yield of dendrimer 6h with
eight acetals. Deprotection of these acetals would provide free
aldehydes, which could be used for subsequent oxime, hydrazone,
or thiazolidene formation.18c In each reaction, the dendrimer
products were purified simply by washing the reaction mixture with
aqueous acid to remove both the pyridine and any unreacted amine.
The free alcohols were then employed to introduce other
functional substituents. Since oxime formation and click chemistry
are orthogonal to one another, a dendrimer containing both protected
aldehydes and alkynes was synthesized. The free alcohols of 6h
were activated with 1,1′-carbonyldiimidazole, then reacted in situ
with propargylamine (Scheme 2). Excess propargylamine and
propargylurea byproduct were washed away with water, affording
bifunctional dendrimer 7 as a white powder in 80% yield.
This work has demonstrated the rapid and scalable synthesis of
heterobifunctional bis-HMPA dendrimers derived from a cyclic
carbonate periphery. The symmetric carbonate periphery reacted
cleanly, efficiently, and selectively with primary amines to produce
bifunctional dendrimers. Use of this methodology yielded a
dendrimer bearing both alkynes and protected aldehydes for
orthogonal ligation reactions. This was accomplished in nine steps
from commercially available materials, requiring only extraction,
precipitation, or recrystallization to purify the synthetic intermedi-
ates. We are exploring the use of this methodology to construct
future platforms for the delivery of therapeutic agents.
References
(1) Ulbrich, K.; Subr, V. AdV. Drug DeliVery ReV. 2004, 56, 1023-1050.
(2) Park, T. G.; Jeong, J. H.; Kim, S. W. AdV. Drug DeliVery ReV. 2007, 58,
467-486.
(3) Kobayashi, H.; Kawamoto, S.; Jo, S. K.; Bryant, H. L.; Brechbiel, M.
W.; Star, R. A. Bioconjugate Chem. 2003, 14, 388-394.
(4) Svenson, S.; Tomalia, D. A. AdV. Drug DeliVery ReV. 2007, 57, 2106-
2129.
(5) Lee, C. C.; Mackay, J. A.; Fre´chet, J. M. J.; Szoka, F. C. Nat. Biotechnol.
2005, 23, 1517-1526.
(6) Lee, C. C.; Gillies, E. R.; Fox, M. E.; Guillaudeu, S. J.; Fre´chet, J. M. J.;
Dy, E. E.; Szoka, F. C. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 16649-
16654.
(7) Gillies, E. R.; Dy, E.; Fre´chet, J. M. J.; Szoka, F. C. Mol. Pharm. 2005,
2, 129-138.
(8) De Jesus, O. L. P.; Ihre, H. R.; Gagne, L.; Fre´chet, J. M. J.; Szoka, F. C.
Bioconjugate Chem. 2002, 13, 453-461.
(9) Gillies, E. R.; Fre´chet, J. M. J. J. Am. Chem. Soc. 2002, 124, 14137-
14146.
(10) Wu, P.; Feldman, A. K.; Nugent, A. K.; Hawker, C. J.; Scheel, A.; Voit,
B.; Pyun, J.; Fre´chet, J. M. J.; Sharpless, K. B.; Fokin, V. V. Angew.
Chem., Int. Ed. 2004, 43, 3928-3932.
(11) Wooley, K. L.; Hawker, C. J.; Fre´chet, J. M. J. J. Am. Chem. Soc. 1993,
115, 11496-11505.
(12) Burgel, T.; Fedtke, M.; Franzke, M. Polym. Bull. 1993, 30, 155-162.
(13) Ochiai, B.; Satoh, Y.; Endo, T. Green Chem. 2005, 7, 765-767.
(14) Al Azemi, T. F.; Bisht, K. S. Macromolecules 1999, 32, 6536-6540.
(15) Ihre, H.; De Jesus, O. L. P.; Fre´chet, J. M. J. J. Am. Chem. Soc. 2001,
123, 5908-5917.
(16) Parrott, M. C.; Marchington, E. B.; Valliant, J. F.; Adronov, A. J. Am.
Chem. Soc. 2005, 127, 12081-12089.
(17) Iozzo, P.; Osman, S.; Glaser, M.; Knickmeier, M.; Ferrannini, E.; Pike,
V. W.; Camici, P. G.; Law, M. P. Nucl. Med. Biol. 2002, 29, 73-82.
(18) (a) Muzart, J.; Genet, J. P.; Denis, A. J. Organomet. Chem. 1987, 326,
C23-C28. (b) Shin, J. A. Bioorg. Med. Chem. Lett. 1997, 7, 2367-2372.
(c) Joshi, N. S.; Whitaker, L. R.; Francis, M. B. J. Am. Chem. Soc. 2004,
126, 15942-15943.
(19) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001,
40, 2004-2021.
JA071530Z
9
J. AM. CHEM. SOC. VOL. 129, NO. 22, 2007 6995