ChemComm
Communication
that the sequential filling mechanism is much related to the
dipole moments of the sorbates.
In conclusion, a UiO type MOF with incorporated Lewis basic
bipyridyl sites was synthesized by the solvothermal reaction of bpdc
with Zr salts. The Soxhlet-extraction activation allows UiO(bpdc) to
be fully evacuated. The highly porous structure combined with Lewis
basic sites incorporated on the pore surface enables UiO(bpdc) to
possess high uptake capacity for H2, CO2 and CH4. The exceptional
stability and excellent adsorption capacities make this MOF a very
promising material for CO2 capture and energy gas storage. Further-
more, the stepwise isotherms observed at low pressure for adsorp-
tion of CO2 at 195 K and adsorption of organic solvents at room
temperatures reveal a sequential filling mechanism of adsorbates on
different adsorption sites.
Fig. 3 (a) CO2 isotherm at 195 K; (b) ethanol isotherm at 293 K; (c)
This work was supported by grants from the Natural Science
Foundation of China (Grant No. 21073216 and 21173246) and
the ‘‘Hundred-talent Project’’ (KJCX2-YW-W34) of the Chinese
benzene isotherm at 293 K; (d) cyclohexane isotherm at 293 K.
range (see details in ESI,† S10). The predicated methane storage Academy of Sciences for the financial support.
capacity from Langmuir simulation is 10.52 mmol gꢀ1 at 293 K and
35 bar, corresponding to 180 v(STP)/v. This value reached the DOE
target of 180 v(STP)/v for methane storage at ambient temperature
and 35 bar, making UiO(bpdc) one of the few MOFs that meet the
Notes and references
1 L. Schlapbach and A. Zu¨ttel, Nature, 2011, 414, 353–358.
2 (a) T. A. Makal, J.-R. Li, W. Lu and H.-C. Zhou, Chem. Soc. Rev., 2012,
DOE target. Compared to the benchmark MOFs with high methane
capacities, such as PCN-14,18 USTA-205 and MOF-7419 etc., UiO(bpdc)
exhibits better thermal and chemical stability owing to the inclusion
of the Zr6O4(OH)4(CO2)12 SBUs. The high capacity and excellent
stability make it a very attractive material for methane storage
applications. The isosteric adsorption enthalpy (Qst) of CO2 and CH4
41, 7761–7779; (b) X. B. Zhao, B. Xiao, A. J. Fletcher and K. M. Thomas,
J. Phys. Chem. B, 2005, 109, 8880–8888.
3 J. Zhang, P. A. Webley and P. Xiao, Energy Convers. Manage., 2008,
49, 346–356.
4 (a) M. Eddaoudi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe
and O. M. Yaghi, Science, 2002, 295, 469–472; (b) X. Zhao, B. Xiao,
A. J. Fletcher, K. M. Thomas, D. Bradshaw and M. J. Rosseinsky,
Science, 2004, 306, 1012–1015; (c) L. Li, S. Tang, X. Lv, M. Jiang,
C. Wang and X. Zhao, New J. Chem., 2013, 37, 3662–3670.
5 Z. Guo, H. Wu, G. Srinivas, Y. Zhou, S. Xiang, Z. Chen, Y. Yang,
W. Zhou, M. O’Keeffe and B. Chen, Angew. Chem., Int. Ed., 2011, 50,
3178–3181.
6 (a) E. Neofotistou, C. D. Malliakas and P. N. Trikalitis, Chem.–Eur. J.,
2009, 15, 4523–4527; (b) H. Liu, Y. Zhao, Z. Zhang, N. Nijem,
Y. J. Chabal, H. Zeng and J. Li, Adv. Funct. Mater., 2011, 21, 4754–4762.
7 (a) S. Biswas and P. Van Der Voort, Eur. J. Inorg. Chem., 2013,
2154–2160; (b) M. Kandiah, M. H. Nilsen, S. Usseglio, S. Jakobsen,
U. Olsbye, M. Tilset, C. Larabi, E. A. Quadrelli, F. Bonino and
K. P. Lillerud, Chem. Mater., 2010, 22, 6632–6640.
8 (a) X. Rao, J. Cai, J. Yu, Y. He, C. Wu, W. Zhou, T. Yildirim, B. Chen
and G. Qian, Chem. Commun., 2013, 49, 6719–6721; (b) E. D. Bloch,
D. Britt, C. Lee, C. J. Doonan, F. J. Uribe-Romo, H. Furukawa,
J. R. Long and O. M. Yaghi, J. Am. Chem. Soc., 2010, 132, 14382–14384.
9 (a) S. Chavan, J. G. Vitillo, D. Gianolio, O. Zavorotynska, B. Civalleri,
S. Jakobsen, M. H. Nilsen, L. Valenzano, C. Lamberti, K. P. Lillerud
and S. Bordiga, Phys. Chem. Chem. Phys., 2012, 14, 1614–1626;
(b) Q. Yang, V. Guillerm, F. Ragon, A. D. Wiersum, P. L. Llewellyn,
C. Zhong, T. Devic, C. Serre and G. Maurin, Chem. Commun., 2012,
48, 9831–9833.
10 (a) J. L. Long, S. B. Wang, Z. X. Ding, S. C. Wang, Y. E. Zhou, L. Huang
and X. X. Wang, Chem. Commun., 2012, 48, 11656–11658; (b) Q. Yang,
S. Vaesen, F. Ragon, A. D. Wiersum, D. Wu, A. Lago, T. Devic,
C. Martineau, F. Taulelle, P. L. Llewellyn, H. Jobic, C. Zhong, C. Serre,
G. De Weireld and G. Maurin, Angew. Chem., Int. Ed., 2013, 52,
10316–10320; (c) J. B. DeCoste, G. W. Peterson, H. Jasuja, T. G. Glover,
Y.-g. Huang and K. S. Walton, J. Mater. Chem. A, 2013, 1, 5642–5650.
on UiO(bpdc) lies in the range of 18.5–24.0 and 12.6–15 kJ molꢀ1
,
respectively. These values suggest the moderate interaction strength
of gas molecules with the framework, which is lower than that of
MIL-10116 but higher than that of MOF-177.15b
Other than high uptake capacities, UiO(bpdc) exhibits unusual
reversible stepwise isotherms for CO2 adsorption at 195 K and
organic solvent (ethanol, cyclohexane and benzene) adsorption at
room temperature (as shown in Fig. 3). Clear or obscure two-step
reversible isotherms are observed for these sorbates at the low
pressure range, which cannot be interpreted by simple multi-layer
adsorption. It could also not be caused by pore expansion and
contraction which is well documented in MIL-5320 and TetZB,21
based on the factors, UiO(bpdc)’s network rigidity combined with
non-hysteretic isotherms and identical PXRD patterns (see PXRD
patterns in ESI,† S4). The stepwise isotherms for UiO(bpdc) could be
attributed to the sequential adsorption of sorbates on different
adsorption sites. The first step may be ascribed to the adsorption
of sorbates on the preferred adsorption sites such as nano-corners
near metal atoms because of the higher adsorption potential, while
the larger second step in isotherms could be attributed to the
pore filling of the rest of the pore volume. With such a sequential
adsorption process, the Qst of CO2 undergoes a two-step transforma- 11 (a) J. H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti,
S. Bordiga and K. P. Lillerud, J. Am. Chem. Soc., 2008, 130,
13850–13851; (b) H.-L. Jiang, D. Feng, T.-F. Liu, J.-R. Li and H.-C.
Zhou, J. Am. Chem. Soc., 2012, 134, 14690–14693.
tion. The first decrease in Qst of CO2 at low loadings indicates that
preferable adsorption sites are occupied firstly, while the following
gradual increase of Qst at the higher loading could be ascribed to 12 X. Lin, I. Telepeni, A. J. Blake, A. Dailly, C. M. Brown, J. M. Simmons,
M. Zoppi, G. S. Walker, K. M. Thomas, T. J. Mays, P. Hubberstey, N. R.
the larger CO2–CO2 interactions when filling the rest of the
spaces. No evident stepwise adsorption is observed for CH4
isotherms and the Qst plot of CH4 is relatively normal, indicating
¨
Champness and M. Schroder, J. Am. Chem. Soc., 2009, 131, 2159–2171.
13 K. Sumida, M. R. Hill, S. Horike, A. Dailly and J. R. Long, J. Am.
Chem. Soc., 2009, 131, 15120–15121.
2306 | Chem. Commun., 2014, 50, 2304--2307
This journal is ©The Royal Society of Chemistry 2014