ACS Catalysis
Page 6 of 8
1
2
3
4
5
6
7
8
9
via Heterocyclic Phosphonium Salts. J. Am. Chem. Soc. 2016, 138,
Simple Aldehydes, Access to 3-Acyl-4-arylcoumarin Derivatives, and
Evaluation of Their Antiandrogenic Activities. J. Org. Chem. 2018, 83,
1988–1996. (b) Zhang, L.; Zhang, G.; Li, Y.; Wang, S.; Lei, A. The
Synergistic Effect of Self-Assembly and Visible-Light Induced the
Oxidative C–H Acylation of N-Heterocyclic Aromatic Compounds with
Aldehydes. Chem. Commun. 2018, 54, 5744–5747.
13806–13809. (j) Gao, G.-L.; Xia, W.; Jain, P.; Yu, J.-Q. Pd(II)-
Catalyzed C3-Selective Arylation of Pyridine with (Hetero)arenes. Org.
Lett. 2016, 18, 744–747. (k) Lutz, J. P.; Chau, S. T.; Doyle, A. G. Nickel-
Catalyzed Enantioselective Arylation of Pyridine. Chem. Sci. 2016, 7,
4105–4109. (l) Yamada, S.; Murakami, K.; Itami, K. Regiodivergent
Cross-Dehydrogenative Coupling of Pyridines and Benzoxazoles:
Discovery of Organic Halides as Regio-Switching Oxidants. Org. Lett.
2016, 18, 2415–2418. (m) Ma, X.; Dang, H.; Rose, J. A.; Rablen, P.;
Herzon, S. B. Hydroheteroarylation of Unactivated Alkenes Using N-
Methoxyheteroarenium Salts. J. Am. Chem. Soc. 2017, 139, 5998–6007.
(n) Hwang, C.; Jo, W.; Cho, S. H. Base-Promoted, Deborylative
Secondary Alkylation of N-Heteroaromatic N-Oxides with Internal gem-
Bis[(pinacolato)boryl]alkanes: A Facile Derivatization of 2,2′-Bipyridyl
Analogues. Chem. Commun. 2017, 53, 7573–7576. (o) Zhang, X.;
McNally, A. Phosphonium Salts as Pseudohalides: Regioselective
Nickel‐Catalyzed Cross‐Coupling of Complex Pyridines and Diazines.
(9) For selected recent examples of acyl radicals, see: (a) Wang, J.; Liu,
C.; Yuan, J.; Lei, A. Copper‐Catalyzed Oxidative Coupling of Alkenes
with Aldehydes: Direct Access to α,β–Unsaturated Ketones. Angew.
Chem. Int. Ed. 2013, 52, 2256–2259. (b) Zhou, M.-B.; Song, R.-J.;
Ouyang, X.-H.; Liu, Y.; Wei, W.-Y.; Deng, G.-B.; Li, J.-H. Metal-Free
Oxidative Tandem Coupling of Activated Alkenes with Carbonyl C(sp2)–
H Bonds and Aryl C(sp2)–H Bonds Using TBHP. Chem. Sci. 2013, 4,
2690–2694. (c) Shi, Z.; Glorius, F. Synthesis of Fluorenones via
Quaternary Ammonium Salt-Promoted Intramolecular Dehydrogenative
Arylation of Aldehydes. Chem. Sci. 2013, 4, 829–833. (d) Matcha, K.;
Antonchick, A. P. Metal‐Free Cross‐Dehydrogenative Coupling of
Heterocycles with Aldehydes. Angew. Chem. Int. Ed. 2013, 52, 2082–
2086. (e) Siddaraju, Y.; Lamani, M.; Prabhu, K. R. A Transition Metal-
Free Minisci Reaction: Acylation of Isoquinolines, Quinolines, and
Quinoxaline. J. Org. Chem. 2014, 79, 3856−3865. (f) Mi, X.; Wang, C.;
Huang, M.; Wu, Y.; Wu, Y. Preparation of 3-Acyl-4-arylcoumarins via
Metal-Free Tandem Oxidative Acylation/Cyclization between
Alkynoates with Aldehydes. J. Org. Chem. 2015, 80, 148−155. (g) Chen,
J.; Wan, M.; Hua, J.; Sun, Y.; Lv, Z.; Li, W.; Liu, L. TBHP/TFA
Mediated Oxidative Cross-Dehydrogenative Coupling of N-Heterocycles
with Aldehydes. Org. Biomol. Chem. 2015, 13, 11561–11566. (h) Ke, Q.;
Zhang, B.; Hu, B.; Jin, Y.; Lu, G. A Transition-Metal-Free, One-Pot
Procedure for the Synthesis of α,β-Epoxy Ketones by Oxidative Coupling
of Alkenes and Aldehydes via Base Catalysis. Chem. Commun. 2015, 51,
1012–1015. (i) Lv, L.; Lu, S.; Guo, Q.; Shen, B.; Li, Z. Iron-Catalyzed
Acylation-Oxygenation of Terminal Alkenes for the Synthesis of
Dihydrofurans Bearing a Quaternary Carbon. J. Org. Chem. 2015, 80,
698–704. (j) Wei, W.-T.; Yang, X.-H.; Li, H.-B.; Li, J.-H. Oxidative
Coupling of Alkenes with Aldehydes and Hydroperoxides: One‐Pot
Synthesis of 2,3‐Epoxy Ketones. Adv. Synth. Catal. 2015, 357, 59–63. (k)
Jhuang, H.-S.; Reddy, D. M.; Chen, T.-H.; Lee, C.-F.
DTBP/TBHP‐Promoted Hydroacylation of Unactivated Alkenes. Asian J.
Org. Chem. 2016, 5, 1452–1456. (l) Jung, S.; Kim, J.; Hong, S. Visible
Light‐Promoted Synthesis of Spiroepoxy Chromanone Derivatives via a
Tandem Oxidation/Radical Cyclization/Epoxidation Process. Adv. Synth.
Catal. 2017, 359, 3945–3949.
(10) (a) Zhang, X.; MacMillan, D. W. C. Direct Aldehyde C–H
Arylation and Alkylation via the Combination of Nickel, Hydrogen Atom
Transfer, and Photoredox Catalysis. J. Am. Chem. Soc. 2017, 139,
11353–11356. (b) Vu, M. D.; Das, M.; Liu, X.-W. Direct Aldehyde
Csp2−H Functionalization through Visible‐Light‐Mediated Photoredox
Catalysis. Chem. -Eur. J. 2017, 23, 15899–15902.
(11) Fan, X.-Z.; Rong, J.-W.; Wu, H.-L.; Zhou, Q.; Deng, H.-P.; Tan, J.
D.; Xue, C.-W.; Wu, L.-Z.; Tao, H.-R.; Wu, J. EosinꢁY as a Direct
Hydrogen‐Atom Transfer Photocatalyst for the Functionalization of C−H
Bonds. Angew. Chem. Int. Ed. 2018, 57, 8514–8518.
(12) (a) Quint, V.; Morlet-Savary, F.; Lohier, J.-F.; Lalevée, J.;
Gaumont, A.-C.; Lakhdar, S. Metal-Free, Visible Light-Photocatalyzed
Synthesis of Benzo[b]phosphole Oxides: Synthetic and Mechanistic
Investigations. J. Am. Chem. Soc. 2016, 138, 7436−7441. (b) Kim, I.;
Min, M.; Kang, D.; Kim, K.; Hong, S. Direct Phosphonation of
Quinolinones and Coumarins Driven by the Photochemical Activity of
Substrates and Products. Org. Lett. 2017, 19, 1394–1397. (c) Quint, V.;
Chouchène, N.; Askri, M.; Lalevée, J.; Gaumont, A.-C.; Lakhdar, S.
Visible-Light-Mediated α-Phosphorylation of N-Aryl Tertiary Amines
through the Formation of Electron-Donor–Acceptor Complexes:
Synthetic and Mechanistic Studies. Org. Chem. Front. 2019, 6, 41–44. (d)
Kim, K.; Choi, H.; Kang, D.; Hong, S. Visible-Light Excitation of
Quinolinone-Containing Substrates Enables Divergent Radical
Cyclizations. Org. Lett. 2019, 21, 3417−3421.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Angew. Chem. Int. Ed. 2017, 56, 9833–9836. (p) Fier, P. S.
A
Bifunctional Reagent Designed for the Mild, Nucleophilic
Functionalization of Pyridines. J. Am. Chem. Soc. 2017, 139, 9499–9502.
(q) Dolewski, R. D.; Fricke, P. J.; McNally, A. Site-Selective Switching
Strategies to Functionalize Polyazines. J. Am. Chem. Soc. 2018, 140,
8020–8026. (r) Han, S.; Chakrasali, P.; Park, J.; Oh, H.; Kim, S.; Kim, K.;
Pandey, A. K.; Han, S. H.; Han, S. B.; Kim, I. S. Reductive
C2‐Alkylation of Pyridine and Quinoline N‐Oxides Using Wittig
Reagents. Angew. Chem. Int. Ed. 2018, 57, 12737–12740.
(4) For selected examples of visible light-induced pyridine
functionalizations, see: (a) Jin, J.; MacMillan, D. W. C. Direct
α‐Arylation of Ethers through the Combination of Photoredox‐Mediated
C–H Functionalization and the Minisci Reaction. Angew. Chem. Int. Ed.
2015, 54, 1565–1569. (b) Boyington, A. J.; Riu, M.-L. Y.; Jui, N. T.
Anti-Markovnikov Hydroarylation of Unactivated Olefins via Pyridyl
Radical Intermediates. J. Am. Chem. Soc. 2017, 139, 6582–6585. (c) Kim,
I.; Park, B.; Kang, G.; Kim, J.; Jung, H.; Lee, H.; Baik, M.-H.; Hong, S.
Visible‐Light‐Induced Pyridylation of Remote C(sp3)−H Bonds by
Radical Translocation of N‐Alkoxypyridinium Salts. Angew. Chem. Int.
Ed. 2018, 57, 15517–15522. (d) He, Y.-T.; Kang, D.; Kim, I.; Hong, S.
Metal-Free Photocatalytic Trifluoromethylative Pyridylation of
Unactivated Alkenes. Green Chem. 2018, 20, 5209–5214. (e) Kim, Y.;
Lee, K.; Mathi, G. R.; Kim, I.; Hong, S. Visible-Light-Induced Cascade
Radical Ring-Closure and Pyridylation for the Synthesis of
Tetrahydrofurans. Green Chem. 2019, 21, 2082–2087. (f) Moon,
Y.; Park, B.; Kim, I.; Kang, G.; Shin, S.; Kang, D.; Baik, M.-H.; Hong,
S. Visible Light Induced Alkene Aminopyridylation Using N-
Aminopyridinium Salts as Bifunctional Reagents. Nat. Commun. 2019,
10, 4117.
(5) (a) Zhou, W.; Miura, T.; Murakami, M. Photocatalyzed
ortho‐Alkylation of Pyridine N‐Oxides through Alkene Cleavage. Angew.
Chem. Int. Ed. 2018, 57, 5139–5142. (b) Sharma, S.; Kumar, M.;
Vishwakarma, R. A.; Verma, M. K.; Singh, P. P. Room Temperature
Metal-Catalyzed Oxidative Acylation of Electron-Deficient Heteroarenes
with Alkynes, Its Mechanism, and Application Studies. J. Org. Chem.
2018, 83, 12420–12431. (c) Xu, J.-H.; Wu, W.-B.; Wu, J. Photoinduced
Divergent Alkylation/Acylation of Pyridine N-Oxides with Alkynes
under Anaerobic and Aerobic Conditions. Org. Lett. 2019, 21, 5321–
5325.
(6) Shelkokv, R.; Melman, A. Free–Radical Approach to 4–Substituted
Dipicolinates. Eur. J. Org. Chem. 2005, 1397–1401.
(7) For selected reviews, see: (a) Chatgilialoglu, C.; Crich, D.; Komatsu,
M.; Ryu, I. Chemistry of Acyl Radicals. Chem. Rev. 1999, 99, 1991–
2070. (b) Banerjee, A.; Lei, Z.; Ngai, M.-Y. Acyl Radical Chemistry via
Visible-Light Photoredox Catalysis. Synthesis 2019, 51, 303–333. (c)
Raviola, C.; Protti, S.; Ravelli, D.; Fagnoni, M. Photogenerated
Acyl/Alkoxycarbonyl/Carbamoyl Radicals for Sustainable Synthesis.
Green Chem. 2019, 21, 748–764.
(8) (a) Kawai, K.; Yamaguchi, T.; Yamaguchi, E.; Endo, S.; Tada, N.;
Ikari, A.; Itoh, A. Photoinduced Generation of Acyl Radicals from
ACS Paragon Plus Environment