E
J.-D. Hamel et al.
Letter
Synlett
R.; Zhao, G.; Ji, Y.; Wang, D.; Zhou, G.; Li, Y. Adv. Mater. 2016, 28,
4747. (d) Fu, S.; Chen, N.-Y.; Liu, X.; Shao, Z.; Luo, S.-P.; Liu, Q.
J. Am. Chem. Soc. 2016, 138, 8588. (e) Tseng, K.-N. T.; Kampf, J.
W.; Szymczak, N. K. J. Am. Chem. Soc. 2016, 138, 10378.
(3) For selected examples, see: (a) Hong, S.; Zhang, W.; Liu, M.; Yao,
Z.-J.; Deng, W. Tetrahedron Lett. 2016, 57, 1. (b) Yao, Z.-J.; Hong,
S.; Zhang, W.; Liu, M.; Deng, W. Tetrahedron Lett. 2016, 57, 910.
(c) Yuan, K.; Suzuki, N.; Mellerup, S. K.; Wang, X.; Yamaguchi, S.;
Wang, S. Org. Lett. 2016, 18, 720. (d) Yang, Z.; Zhong, M.; Ma, X.;
Nijesh, K.; De, S.; Parameswaran, P.; Roesky, H. W. J. Am. Chem.
Soc. 2016, 138, 2548. (e) McGough, J. S.; Butler, S. M.; Cade, I. A.;
Ingleson, M. J. Chem. Sci. 2016, 7, 3384. (f) Fleige, M.; Möbus, J.;
vom Stein, T.; Glorius, F.; Stephan, D. W. Chem. Commun. 2016,
52, 10830.
(b) Ardolino, M. J.; Eno, M. S.; Morken, J. P. Adv. Synth. Catal.
2013, 355, 3413.
(13) For propargylic allylation with allylbromides, see: Yadav, J. S.;
Subba Reddy, B. V.; Chandrakanth, D.; Prashant, B. Chem. Lett.
2008, 37, 954.
(14) For propargylic allylation with allylic alcohols, see: Hamilton, J.
Y.; Sarlah, D.; Carreira, E. M. Angew. Chem. Int. Ed. 2013, 52,
7532.
(15) For propargylic allylation with allylsilanes, see: (a) Luzung, M.
R.; Toste, F. D. J. Am. Chem. Soc. 2003, 125, 15760. (b) Schwier,
T.; Rubin, M.; Gevorgyan, V. Org. Lett. 2004, 6, 1999. (c) Georgy,
M.; Boucard, V.; Campagne, J.-M. J. Am. Chem. Soc. 2005, 127,
14180. (d) Sanz, R.; Martínez, A.; Álvarez-Gutiérrez, J. M.;
Rodríguez, F. Eur. J. Org. Chem. 2006, 1383. (e) Zhan, Z.-P.; Yang,
W.-Z.; Yang, R.-F.; Yu, J.-L.; Li, J.-P.; Liu, H.-J. Chem. Commun.
2006, 3352. (f) Zhan, Z.-P.; Yu, J.-L.; Liu, H.-J.; Cui, Y.-Y.; Yang, R.-
F.; Yang, W.-Z.; Li, J.-P. J. Org. Chem. 2006, 71, 8298. (g) Srihari,
P.; Bhunia, D. C.; Sreedhar, P.; Mandal, S. S.; Shyam Sunder
Reddy, J.; Yadav, J. S. Tetrahedron Lett. 2007, 48, 8120.
(h) Georgy, M.; Boucard, V.; Debleds, O.; Dal Zotto, C.;
Campagne, J.-M. Tetrahedron 2009, 65, 1758. (i) Debleds, O.;
Gayon, E.; Vrancken, E.; Campagne, J.-M. Beilstein J. Org. Chem.
2011, 7, 866. (j) Weng, S.-S.; Hsieh, K.-Y.; Zeng, Z.-J. Tetrahedron
2015, 71, 2549. (k) Barreiro, E.; Sanz-Vidal, A.; Tan, E.; Lau, S.-H.;
Shepperd, T. D.; Díez-González, S. Eur. J. Org. Chem. 2015, 7544.
(16) (a) Smith, S. W.; Fu, G. C. J. Am. Chem. Soc. 2008, 130, 12645.
(b) Oelke, A. J.; Sun, J.; Fu, G. C. J. Am. Chem. Soc. 2012, 134, 2966.
(17) Eberhart, A. J.; Procter, D. J. Angew. Chem. Int. Ed. 2013, 52, 4008.
(18) (a) Müller, T. J. J. Eur. J. Org. Chem. 2001, 2021. (b) Kabalka, G.
W.; Yao, M.-L. Curr. Org. Synth. 2008, 5, 28. (c) Ljungdahl, N.;
Kann, N. Angew. Chem. Int. Ed. 2009, 48, 642. (d) Miyake, Y.;
Uemura, S.; Nishibayashi, Y. ChemCatChem 2009, 1, 342.
(e) Ding, C.-H.; Hou, X.-L. Chem. Rev. 2011, 111, 1914.
(4) For reviews on the subject, see: (a) Hashmi, A. S. K. Chem. Rev.
2007, 107, 3180. (b) Li, Z.; Brouwer, C.; He, C. Chem. Rev. 2008,
108, 3239. (c) Siva Kumari, A. L.; Siva Reddy, A.; Kumara Swamy,
K. C. Org. Biomol. Chem. 2016, 14, 6651. (d) Miró, J.; del Pozo, C.
Chem. Rev. 2016, 116, 11924.
(5) For a review on the subject, see: Chinchilla, R.; Nájera, C. Chem.
Rev. 2007, 107, 874.
(6) For reviews on the subject, see: (a) Tron, G. C.; Pirali, T.;
Billington, R. A.; Canonico, P. L.; Sorba, G.; Genazzani, A. A. Med.
Res. Rev. 2008, 28, 278. (b) Moorhouse, A. D.; Moses, J. E.
ChemMedChem 2008, 3, 715. (c) Sapkale, P.; Sahu, M.;
Chaudhari, M.; Patil, P. R. Int. J. Pharm. Pharm. Sci. 2014, 6, 99.
(d) Wang, C.; Ikhlef, D.; Kahlal, S.; Saillard, J.-Y.; Astruc, D. Coord.
Chem. Rev. 2016, 316, 1. (e) Marrocchi, A.; Facchetti, A.; Lanari,
D.; Santoro, S.; Vaccaro, L. Chem. Sci. 2016, 7, 6298.
(7) For reviews on the subject, see: (a) Fürstner, A.; Davies, P. W.
Chem. Commun. 2005, 2307. (b) Zhang, W.; Moore, J. S. Adv.
Synth. Catal. 2007, 349, 93. (c) Fürstner, A. Angew. Chem. Int. Ed.
2013, 52, 2794.
(8) (a) Pelphrey, P. M.; Popov, V. M.; Joska, T. M.; Beierlein, J. M.;
Bolstad, E. S. D.; Fillingham, Y. A.; Wright, D. L.; Anderson, A. C.
J. Med. Chem. 2007, 50, 940. (b) Bolstad, D. B.; Bolstad, E. S. D.;
Frey, K. M.; Wright, D. L.; Anderson, A. C. J. Med. Chem. 2008, 51,
6839. (c) Liu, J.; Bolstad, D. B.; Smith, A. E.; Priestley, N. D.;
Wright, D. L.; Anderson, A. C. Chem. Biol. Drug Des. 2009, 73, 62.
(d) Paulsen, J. L.; Viswanathan, K.; Wright, D. L.; Anderson, A. C.
Bioorg. Med. Chem. Lett. 2013, 23, 1279. (e) G-Dayanandan, N.;
Paulsen, J. L.; Viswanathan, K.; Keshipeddy, S.; Lombardo, M. N.;
Zhou, W.; Lamb, K. M.; Sochia, A. E.; Alverson, J. B.; Priestley, N.
D.; Wright, D. L.; Anderson, A. C. J. Med. Chem. 2014, 57, 2643.
(f) Keshipeddy, S.; Reeve, S. M.; Anderson, A. C.; Wright, D. L.
J. Am. Chem. Soc. 2015, 137, 8983.
(9) (a) Lockwood, R. F.; Nicholas, K. M. Tetrahedron Lett. 1977, 48,
4163. (b) Grove, D. D.; Corte, J. R.; Spencer, R. P.; Pauly, M. E.;
Rath, N. P. J. Chem. Soc., Chem. Commun. 1994, 49.
(c) LeBrazidec, J. Y.; Kociensky, P. J.; Connolly, J. D.; Muir, K. W.
J. Chem. Soc., Perkin Trans. 1 1998, 2475. (d) Cassel, J. A.; Leue,
S.; Gachkova, N. I.; Kann, N. C. J. Org. Chem. 2002, 67, 9460.
(10) (a) Nishibayashi, Y.; Yoshikawa, M.; Inada, Y.; Hidai, M.;
Uemura, S. J. Am. Chem. Soc. 2002, 124, 11846. (b) Inada, Y.;
Yoshikawa, M.; Milton, M. D.; Nishibayashi, Y.; Uemura, S. Eur. J.
Org. Chem. 2006, 881. (c) Yoshimatsu, M.; Otani, T.; Matsuda, S.;
Yamamoto, T.; Sawa, A. Org. Lett. 2008, 10, 4251. (d) Chatterjee,
P. N.; Roy, S. J. Org. Chem. 2010, 75, 4413.
(19) (a) Wotiz, J. H.; Palchak, R. J. J. Am. Chem. Soc. 1951, 73, 1971.
(b) Ishikawa, T.; Okano, M.; Aikawa, T.; Saito, S. J. Org. Chem.
2001, 66, 4635. (c) Xu, C.-F.; Xu, M.; Yang, L.-Q.; Li, C.-Y. J. Org.
Chem. 2012, 77, 3010. (d) Morita, N.; Miyamoto, M.; Yoda, A.;
Yamamoto, M.; Ban, S.; Hashimoto, Y.; Tamura, O. Tetrahedron
Lett. 2016, 57, 4460.
(20) (a) Swaminathan, S.; Narayanan, K. V. Chem Rev. 1971, 71, 429.
(b) Edens, M.; Boerner, D.; Chase, C. R.; Nass, D.; Schiavelli, M. D.
J. Org. Chem. 1977, 42, 3403. (c) Yoshimatsu, M.; Naito, M.;
Kawahigashi, M.; Shimizu, H.; Kataoka, T. J. Org. Chem. 1995, 60,
4798.
(21) (a) Champagne, P. A.; Pomarole, J.; Thérien, M.-È.; Benhassine,
Y.; Beaulieu, S.; Legault, C. Y.; Paquin, J.-F. Org. Lett. 2013, 15,
2210. (b) Champagne, P. A.; Saint-Martin, A.; Drouin, M.;
Paquin, J.-F. Beilstein J. Org. Chem. 2013, 9, 2451. (c) Champagne,
P. A.; Benhassine, Y.; Desroches, J.; Paquin, J.-F. Angew. Chem.
Int. Ed. 2014, 53, 13835. (d) Champagne, P. A.; Drouin, M.;
Legault, C. Y.; Audubert, C.; Paquin, J.-F. J. Fluorine Chem. 2015,
171, 113. (e) Hemelaere, R.; Champagne, P. A.; Desroches, J.;
Paquin, J.-F. J. Fluorine Chem. 2016, 190, 1.
(22) For reviews on C–F bonds involved in hydrogen bonds, see:
(a) Schneider, H.-J. Chem. Sci. 2012, 3, 1381. (b) Champagne, P.
A.; Desroches, J.; Paquin, J.-F. Synthesis 2015, 47, 306.
(23) (a) Prakesch, M.; Grée, D.; Grée, R. Acc. Chem. Res. 2002, 35, 175.
(b) Pacheco, M. C.; Purser, S.; Gouverneur, V. Chem. Rev. 2008,
108, 1943.
(11) Rubenbauer, P.; Herdtweck, E.; Strassner, T.; Bach, T. Angew.
Chem. Int. Ed. 2008, 47, 10106.
(12) For propargylic allylation with allylboranes, see: (a) Ardolino,
M. J.; Morken, J. P. J. Am. Chem. Soc. 2012, 134, 8770.
(24) Prakesch, M.; Kerouredan, E.; Grée, D.; Grée, R.; DeChancie, J.;
Houk, K. N. J. Fluorine Chem. 2004, 125, 537.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2017, 28, A–F