Park et al.
Phosphorescence Color Tuning of Oxadiazole-Based Iridium(III) Complexes for OLED
Table II. OLED device characteristics of the iridium complexes.
might exhibit various emission colors due to the main lig-
and effect among the complexes. Generally, the energy
gap of the main ligand has a major effect in determining
the emitting color of its complex. The electroluminescence
EL
Power
Quantum Luminance
Ir
ꢄmax efficiency efficiency
efficiency
(cd/A)
complex
(nm)
500
(lm/W)
(%)
CIE
spectra of Ir(F -ppy) (ODZ) and Ir(ppy) (ODZ) exhibited
Ir(F -ppy)2
5ꢆ52
2ꢆ62
7ꢆ91
35ꢆ02
9ꢆ64
(0.30, 0.56)
2
2
2
2
(
ODZ)
Ir(ppy)2
ODZ)
Ir(pq)2
ODZ)
the similar emission patterns with the maxima at 500 and
510
606
20ꢆ63
7ꢆ57
10ꢆ64
6ꢆ63
(0.33, 0.57)
(0.61, 0.38)
510 nm, while Ir(pq) (ODZ) revealed the red luminescence
2
(
around 606 nm with the CIE coordinates of (0.61, 0.38).
Considering the consistent UV and PL patterns of the irid-
ium complexes with ppy-based main ligands discussed in
this study, we could infer that the ILET might operate
in the phosphorescence process of Ir(F -ppy) (ODZ) and
(
observed at 500, 510 and 606 nm, respectively. These
results were consistent with the PL results and indicated
that EL originated from the iridium complex dopant in
the emitting layer. Figure 5(b) shows the luminance effi-
ciency versus current density characteristics of the devices
with iridium complexes. The maximum luminous efficien-
cies of the devices with Ir(F -ppy) (ODZ), Ir(ppy) (ODZ)
2
2
Ir(ppy) (ODZ). The EL device of Ir(ppy) (ODZ) showed
2
2
the best luminous efficiency of 35 cd/A. On the other
hand, the emission of Ir(pq) (ODZ) was assigned to origi-
2
nate from electronic transition in the main ligand, pq. This
study also showed the possibility of the application of irid-
ium complexes containing oxadizole-based ligand which
has a good electron transporting property to the phospho-
rescent material for OLED.
2
2
2
and Ir(pq) (ODZ) were 7.91, 35.02 and 9.64 cd/A, respec-
2
tively. The device of Ir(ppy) (ODZ) showed the best lumi-
2
nous efficiency of 35.02 cd/A. The ILET between the
ppy main ligand and the ancillary ligand, ODZ, seemed
to occur strongly, leading their iridium complex to have
substantial improvement of the device efficiencies. The
Ir complexes bearing a benzoquinoline ancillary ligand
was recently reported to show similar improvement of the
Acknowledgments: This study was supported by the
Korea Research Foundation (No. 2011-0003765).
References and Notes
2
3
device performances by I LD Ee Tl i. ver He do wb eyv eP r u, bt hl i es h di ne vg i cTe e co hf nology to: University of Waterloo
1. B. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, and
IP: 23.24.70.177 On: Wed, 14 Oct 2015 07:09:55
Ir(F -ppy) (ODZ) did not show high efficiency in spite of
S. R. Forrest, Appl. Phys. Lett. 75, 4 (1999).
2
2
Copyright: American Scientific Publishers
possible ILET. Delicate criteria seem to operate in rela-
tive triplet energy levels of the main and ancillary lig-
ands for the ILET mechanism to be operated. Further
studies are in progress regarding theoretical calculation of
energy levels of the complexes studied herein. The Com-
mission Internationale de L’Eclairage (CIE) coordinates of
Ir(F -ppy) (ODZ), Ir(ppy) (ODZ) and Ir(pq) (ODZ) were
2. F. C. Chen, Y. Yang, M. E. Thompson, and J. Kido, Appl. Phys. Lett.
80, 2308 (2002).
3. A. B. Tamayo, S. Garon, T. Sajoto, P. I. Djurovich, I. M.
Tsyba, R. Bau, and M. E. Thompson, Inorg. Chem. 44, 8723
(
2005).
4. S.-J. Su, E. Gonmori, H. Sasabe, and J. Kido, J. Adv. Mater. 20, 4189
(2008).
5. Y. S. Yao, J. Xiao, X. S. Wang, Z. B. Deng, and B. W. Zhang, Adv.
Funct. Mater. 16, 709 (2006).
2
2
2
2
(0.30, 0.56), (0.33, 0.57) and (0.61, 0.38), respectively.
6
. Y. H. Kim and S. K. Kwon, J. Appl. Polm. Sci. 100, 2151
2006).
. H. S. Lee, S. Y. Ahn, H. S. Huh, and Y. Ha, J. Organomet. Chem.
94, 3325 (2009).
Table II and Figure 4 spresent the detailed data and device
structure.
We also tried to synthesize the homoleptic iridium com-
(
7
6
plex of ODZ, Ir(ODZ) , for luminescence comparison.
The synthesis of homoleptic iridium complex was however
8. S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, H. Lee,
C. Adachi, P. E. Burrows, S. R. Forrest, and M. E. Thompson, Inorg.
Chem. 40, 1704 (2001).
3
failed. The failure in formation of Ir(ODZ) is attributed
3
9. Y. You and S. Y. Park, J. Am. Chem. Soc. 127, 12438 (2005).
to the difficulty in tri-cyclometallated six-membered ring
formation with the iridium center and steric bulkiness of
ODZ ligand.
10. Y. You, J. Seo, S. H. Kim, K. S. Kim, T. K. Ahn, D. Kim, and S. Y.
Park, Inorg. Chem. 47, 1476 (2008).
11. B. Schulz, M. Bruma, and L. Brehmer, Adv. Mater. 9, 601 (1997).
2. S. Chung, K. Kwon, S. Lee, J. Jin, C. H. Lee, C. E. Lee, and Y. Park,
1
Adv. Mater. 10, 1112 (1998).
13. N. X. Hu, M. Esteghamatian, S. Xie, Z. Popovic, A.-M. Hor, B. Ong,
and S. Wang, Adv. Mater. 11, 1460 (1999).
4. CONCLUSIONS
We have focused our research on the development of irid-
ium complexes, especially with respect to color tuning
14. G. Y. Park, J. H. Seo, Y. K. Kim, Y. S. Kim, and Y. Ha, J. Kor. Phys.
Soc. 50, 1729 (2007).
15. M. Nonoyama, J. Oranomet. Chem. 86, 263 (1975).
and efficiency improvement of luminescence for OLED.
∧
16. Y. You, K. S. Kim, T. K. Ahn, D. Kim, and S. Y. Park, J. Phys.
Chem. C 111, 4052 (2007).
17. Y. You and S. Y. Park, J. Am. Chem. Soc. 127, 12438 (2005).
Herein, we synthesized Ir(C N) (ODZ) and studied
2
their emission patterns and characteristics where F -ppy,
2
∧
ppy and pq were introduced as main ligands (C N).
18. Y. You, J. Seo, S. H. Kim, K. S. Kim, T. K. Ahn, D. Kim, and S. Y.
We expected that the complexes synthesized in this study
Park, Inorg. Chem. 47, 1476 (2008).
J. Nanosci. Nanotechnol. 12, 5613–5618, 2012
5617