178
W. Liu et al. / Free Radical Biology & Medicine 50 (2011) 166–178
[12] Petersen, D. R.; Doorn, J. A. Reactions of 4-hydroxynonenal with proteins and
cellular targets. Free Radic. Biol. Med. 37:937–945; 2004.
[42] Yin, H.; Cox, B. E.; Liu, W.; Porter, N. A.; Morrow, J. D.; Milne, G. L. Identification of
intact oxidation products of glycerophospholipids in vitro and in vivo using
negative ion electrospray iontrap mass spectrometry. J. Mass Spectrom. 44:
672–680; 2009.
[13] Schneider, C.; Porter, N. A.; Brash, A. R. Routes to 4-hydroxynonenal: fundamental
issuesinthemechanismsof lipid peroxidation. J. Biol. Chem. 283:15539–15543; 2008.
[14] Pryor, W. A.; Porter, N. A. Suggested mechanisms for the production of 4-hydroxy-
2-nonenal from the autoxidation of polyunsaturated fatty acids. Free Radic. Biol.
Med. 8:541–543; 1990.
[15] Schneider, C.; Tallman, K. A.; Porter, N. A.; Brash, A. R. Two distinct pathways of
formation of 4-hydroxynonenal: mechanisms of nonenzymatic transformation of
the 9- and 13-hydroperoxides of linoleic acid to 4-hydroxyalkenals. J. Biol. Chem.
276:20831–20838; 2001.
[16] Schneider, C.; Boeglin, W. E.; Yin, H.; Donald, F. Stec.; Porter, D. L. H. A.; Brash, A. R.
Synthesis of dihydroperoxides of linoleic and linolenic acids and studies on their
transformation to 4-hydroperoxynonenal. Lipids 40:1155–1162; 2005.
[17] Schneider, C.; Boeglin, W. E.; Yin, H.; Porter, N. A.; Brash, A. R. Intermolecular
peroxyl radical reactions during autoxidation of hydroxy and hydroperoxy
arachidonic acids generate a novel series of epoxidized products. Chem. Res.
Toxicol. 21:895–903; 2008.
[43] Pulfer, M.; Murphy, R. C. Electrospray mass spectrometry of phospholipids. Mass
Spectrom. Rev. 22:332–364; 2003.
[44] Domingues, M. R. M.; Reis, A.; Domingues, P. Mass spectrometry analysis of
oxidized phospholipids. Chem. Phys. Lipids 156:1–12; 2008.
[45] Tyurin, V. A.; Tyurina, Y. Y.; Kochanek, P. M.; Hamilton, R.; DeKosky, S. T.;
Greenberger, J. S.; Bayir, H.; Kagan, V. E.; Roya Khosravi-Far, Z. Z. R. A. L.; Mauro, P.
Oxidative lipidomics of programmed cell death. Meth. Enzymol. 442:375–393; 2008.
[46] Tyurina, Y. Y.; Tyurin, V. A.; Epperly, M. W.; Greenberger, J. S.; Kagan, V. E.
Oxidative lipidomics of γ-irradiation-induced intestinal injury. Free Radic. Biol.
Med. 44:299–314; 2008.
[47] Tyurina, Y. Y.; Tyurin, V. A.; Kapralova, V. I.; Amoscato, A. A.; Epperly, M. W.;
Greenberger, J. S.; Kagan, V. E. Mass-spectrometric characterization of phospho-
lipids and their hydroperoxide derivatives in vivo: effects of total body irradiation.
Meth. Mol. Biol. 580:153–183; 2009.
[18] Lee, S. H.; Oe, T.; Blair, I. A. Vitamin C-induced decomposition of lipid
hydroperoxides to endogenous genotoxins. Science 292:2083–2086; 2001.
[19] Gu, X.; Zhang, W.; Salomon, R. G. Fe2+ catalyzes vitamin E-induced fragmentation
of hydroperoxy and hydroxy endoperoxides that generates gamma-hydroxy
alkenals. J. Am. Chem. Soc. 129:6088–6089; 2007.
[48] Roede, J. R.; Jones, D. P. Reactive species and mitochondrial dysfunction:
mechanistic significance of 4-hydroxynonenal. Environ. Mol. Mutagen. 51:
380–390; 2010.
[49] Paradies, G.; Ruggiero, F. M.; Petrosillo, G.; Quagliariello, E. Peroxidative damage
to cardiac mitochondria: cytochrome oxidase and cardiolipin alterations. FEBS
Lett. 424:155–158; 1998.
[20] Mayo, F. R.; Miller, A. A. Oxidation of unsaturated compounds. II. Reactions of
styrene peroxide 1. J. Am. Chem. Soc. 78:1023–1034; 1956.
[21] Morita, M.; Tokita, M. The real radical generator other than main-product
hydroperoxide in lipid autoxidation. Lipids 41:91–95; 2006.
[50] Sen, T.; Sen, N.; Tripathi, G.; Chatterjee, U.; Chakrabarti, S. Lipid peroxidation
associated cardiolipin loss and membrane depolarization in rat brain mitochon-
dria. Neurochem. Int. 49:20–27; 2006.
[22] Miyashita, K.; Hara, N.; Fujimoto, K.; Kaneda, T. Formation of dimers during the initial
stage of autoxidation in methyl linoleate. Agric. Biol. Chem. 46:751–755; 1982.
[23] Miyashita, K.; Hara, N.; Fujimoto, K.; Kaneda, T. Structural studies of polar dimers
in autoxidized methyl linoleate during the initial stages of autoxidation. Agric.
Biol. Chem. 48:2511–2515; 1984.
[24] Miyashita, K.; Hara, N.; Fujimoto, K.; Kaneda, T. Decomposition products of dimers
arising from secondary oxidation of methyl linoleate hydroperoxides. Agric. Biol.
Chem. 49:2633–2640; 1985.
[51] Nakagawa, Y. Initiation of apoptotic signal by the peroxidation of cardiolipin of
mitochondria. Ann. NY Acad. Sci. 1011:177–184; 2004.
[52] Orrenius, S.; Zhivotovsky, B. Cardiolipin oxidation sets cytochrome c free. Nat.
Chem. Biol. 1:188–189; 2005.
[53] Ott, M.; Zhivotovsky, B.; Orrenius, S. Role of cardiolipin in cytochrome c release
from mitochondria. Cell Death Differ. 14:1243–1247; 2007.
[54] Ji, C.; Amarnath, V.; Pietenpol, J. A.; Marnett, L. J. 4-Hydroxynonenal induces
apoptosis via caspase-3 activation and cytochrome c release. Chem. Res. Toxicol.
14:1090–1096; 2001.
[25] Miyashita, K.; Hara, N.; Fujimoto, K.; Kaneda, T. Dimers formed in oxygenated
methyl linoleate hydroperoxides. Lipids 20:578–587; 1985.
[55] Uchida, K. Role of reactive aldehyde in cardiovascular diseases. Free Radic. Biol.
[26] Hauff, K. D.; Hatch, G. M. Cardiolipin metabolism and Barth syndrome. Prog. Lipid
Res. 45:91–101; 2006.
[27] Lesnefsky, E. J.; Hoppel, C. L. Cardiolipin as an oxidative target in cardiac
mitochondria in the aged rat. Biochim. Biophys. Acta 1777:1020–1027; 2008.
[28] Schlame, M.; Ren, M.; Xu, Y.; Greenberg, M. L.; Haller, I. Molecular symmetry in
mitochondrial cardiolipins. Chem. Phys. Lipids 138:38–49; 2005.
[29] Kagan, V. E.; Tyurin, V. A.; Jiang, J.; Tyurina, Y. Y.; Ritov, V. B.; Amoscato, A. A.;
Osipov, A. N.; Belikova, N. A.; Kapralov, A. A.; Kini, V.; Vlasova, I. I.; Zhao, Q.; Zou,
M.; Di, P.; Svistunenko, D. A.; Kurnikov, I. V.; Borisenko, G. G. Cytochrome c acts as
a cardiolipin oxygenase required for release of proapoptotic factors. Nat. Chem.
Biol. 1:223–232; 2005.
[30] Gonzalvez, F.; Gottlieb, E. Cardiolipin: setting the beat of apoptosis. Apoptosis 12:
877–885; 2007.
[31] Kagan, V. E.; Bayir, H. A.; Belikova, N. A.; Kapralov, O.; Tyurina, Y. Y.; Tyurin, V. A.;
Jiang, J.; Stoyanovsky, D. A.; Wipf, P.; Kochanek, P. M.; Greenberger, J. S.; Pitt, B.;
Shvedova, A. A.; Borisenko, G. Cytochrome c/cardiolipin relations in mitochon-
dria: a kiss of death. Free Radic. Biol. Med. 46:1439–1453; 2009.
[32] Milne, G. L.; Seal, J. R.; Havrilla, C. M.; Wijtmans, M.; Porter, N. A. Identification and
analysis of products formed from phospholipids in the free radical oxidation of
human low density lipoproteins. J. Lipid Res. 46:307–319; 2005.
Med. 28:1685–1696; 2000.
[56] Uchida, K. Future of toxicology—lipid peroxidation in the future: from biomarker
to etiology. Chem. Res. Toxicol. 20:3–5; 2007.
[57] Liu, Q.; Raina, A. K.; Smith, M. A.; Sayre, L. M.; Perry, G. Hydroxynonenal, toxic
carbonyls, and Alzheimer disease. Mol. Aspects Med. 24:305–313; 2003.
[58] Lin, D.; Lee, H. -g.; Liu, Q.; Perry, G.; Smith, M. A.; Sayre, L. M. 4-Oxo-2-nonenal is
both more neurotoxic and more protein reactive than 4-hydroxy-2-nonenal.
Chem. Res. Toxicol. 18:1219–1231; 2005.
[59] Sayre, L. M.; Perry, G.; Smith, M. A. Oxidative stress and neurotoxicity. Chem. Res.
Toxicol. 21:172–188; 2008.
[60] Sayre, L. M.; Smith, M. A.; Perry, G. Chemistry and biochemistry of oxidative stress
in neurodegenerative disease. Curr. Med. Chem. 8:721–738; 2001.
[61] Wang, H. -Y. J.; Jackson, S. N.; Woods, A. S. Direct MALDI-MS analysis of cardiolipin
from rat organs sections. J. Am. Soc. Mass Spectrom. 18:567–577; 2007.
[62] Picklo, S. M. J.; Montine, T. J. Mitochondrial effects of lipid-derived neurotoxins. J.
Alzheimers Dis. 12:185–193; 2007.
[63] Akude, E.; Zherebitskaya, E.; Roy Chowdhury, S.; Girling, K.; Fernyhough, P. 4-Hydroxy-
2-nonenal induces mitochondrial dysfunction and aberrant axonal outgrowth in adult
sensory neurons that mimics features of diabetic neuropathy. Neurotox. Res. 17:28–38;
2010.
[33] Uchida, T.; Gotoh, N.; Wada, S. Method for analysis of 4-hydroxy-2-(E)-nonenal
[64] Hoye, A. T.; Davoren, J. E.; Wipf, P.; Fink, M. P.; Kagan, V. E. Targeting mitochondria.
Acc. Chem. Res. 41:87–97; 2008.
with solid-phase microextraction. Lipids 37:621–626; 2002.
[34] Harrison, K. A.; Davies, S. S.; Marathe, G. K.; McIntyre, T.; Prescott, S.; Reddy, K. M.;
Falck, J. R.; Murphy, R. C. Analysis of oxidized glycerophosphocholine lipids using
electrospray ionization mass spectrometry and microderivatization techniques. J.
Mass Spectrom. 35:224–236; 2000.
[35] Pulfer, M.; Murphy, R. C. Electrospray mass spectrometry of phospholipids. Mass
Spectrom. Rev. 22:332–364; 2003.
[36] Kadiiska, M. B.; Gladen, B. C.; Baird, D. D.; Germolec, D.; Graham, L. B.; Parker, C. E.;
Nyska, A.; Wachsman, J. T.; Ames, B. N.; Basu, S.; Brot, N.; FitzGerald, G. A.; Floyd, R. A.;
George, M.; Heinecke, J. W.; Hatch, G. E.; Hensley, K.; Lawson, J. A.; Marnett, L. J.;
Morrow, J. D.; Murray, D. M.; Plastaras II, J.; L.J. R.; Rokach, J.; Shigenaga, M. K.; Sohal,
R. S.; Sun, J.; Tice, R. R.; Thiel, D. H. V.; Wellner, D.; Walter, P. B.; Tome, K. B.;
Mason, R. P.; Barrett, J. C. Biomarkers of Oxidative Stress Study II: are oxidation
products of lipids, proteins, and DNA markers of CCl4 poisoning? Free Radic. Biol.
Med. 38:698–710; 2005.
[65] Belikova, N. A.; Tyurina, Y. Y.; Borisenko, G.; Tyurin, V.; Samhan Arias, A. K.;
Yanamala, N.; Furtmuller, P. G.; Klein-Seetharaman, J.; Obinger, C.; Kagan, V. E.
Heterolytic reduction of fatty acid hydroperoxides by cytochrome c/cardiolipin
complexes: antioxidant function in mitochondria. J. Am. Chem. Soc. 131:
11288–11289; 2009.
[66] Nomura, K.; Imai, H.; Koumura, T.; Kobayashi, T.; Nakagawa, Y. Mitochondrial
phospholipid hydroperoxide glutathione peroxidase inhibits the release of
cytochrome c from mitochondria by suppressing the peroxidation of cardiolipin
in hypoglycaemia-induced apoptosis. Biochem. J. 351:183–193; 2000.
[67] Liang, H.; Ran, Q.; Jang, Y. C.; Holstein, D.; Lechleiter, J.; McDonald-Marsh, T.;
Musatov, A.; Song, W.; Van Remmen, H.; Richardson, A. Glutathione peroxidase 4
differentially regulates the release of apoptogenic proteins from mitochondria.
Free Radic. Biol. Med. 47:312–320; 2009.
[68] Milne, G. L.; Yin, H.; Morrow, J. D. Human biochemistry of the isoprostane
[37] Benedetti, A.; Comporti, M.; Esterbauer, H. Identification of 4-hydroxynonenal as a
cytotoxic product originating from the peroxidation of liver microsomal lipids.
Biochim. Biophys. Acta 620:281–296; 1980.
[38] Miyashita, K.; Hara, N.; Fujimoto, K.; Kaneda, T. Structure of dimers produced from
methyl linoleate during the initial stages of autoxidation. Agric. Biol. Chem. 46:
2293–2297; 1982.
pathway. J. Biol. Chem. 283:15533–15537; 2008.
[69] Chen, L.; Na, R.; Gu, M.; Salmon, A. B.; Liu, Y.; Liang, H.; Qi, W.; Remmen, H. V.;
Richardson, A.; Ran, Q. Reduction of mitochondrial H2O2 by overexpressing
peroxiredoxin 3 improves glucose tolerance in mice. Aging Cell 7:866–878; 2008.
[70] Brichac, J.; Ho, K. K.; Honzatko, A.; Wang, R.; Lu, X.; Weiner, H.; Picklo, M. J.
Enantioselective oxidation of trans-4-hydroxy-2-nonenal is aldehyde dehydro-
genase isozyme and Mg2+ dependent. Chem. Res. Toxicol. 20:887–895; 2007.
[71] Chen, C. -H.; Budas, G. R.; Churchill, E. N.; Disatnik, M. -H.; Hurley, T. D.; Mochly-Rosen,
D. Activation of aldehyde dehydrogenase-2 reduces ischemic damage to the heart.
Science 321:1493–1495; 2008.
[39] Cosgrove, J.; Church, D.; Pryor, W. The kinetics of the autoxidation of
polyunsaturated fatty acids. Lipids 22:299–304; 1987.
[40] Bowry, V. W. Arm-to-arm autoxidation in a triglyceride: remote group reaction
kinetics. J. Org. Chem. 59:2250–2252; 1994.
[41] Moon, K. H.; Lee, Y. M.; Song, B. J. Inhibition of hepatic mitochondrial aldehyde
dehydrogenase by carbon tetrachloride through JNK-mediated phosphorylation.
Free Radic. Biol. Med. 48:391–398; 2010.
[72] Hill, B. G.; Awe, S. O.; Vladykovskaya, E.; Ahmed, Y.; Liu, S. -Q.; Bhatnagar, A.;
Srivastava, S. Myocardial ischaemiainhibits mitochondrialmetabolism of 4-hydroxy-
trans-2-nonenal. Biochem. J. 417:513–524; 2009.