130
G.D. Yadav, S.R. More / Applied Catalysis A: General 411–412 (2012) 123–130
Scheme 1. Propionylation of veratrole to 3,4-dimethoxypropiophenone using UDCaT-5 as novel solid acid catalyst.
active, selective, stable and reusable catalyst. It gave 100% selec-
0.2
0.18
0.16
0.14
0.12
0.1
tivity towards the desired product 3,4-dimethoxypropiophenone.
The effects of various parameters on the rates over UDCaT-5 were
discussed. A kinetic model for the reaction mechanism was success-
fully developed. It follows Eley–Rideal type of mechanism, wherein
the chemisorbed propionic anhydride generates a carbocation and
propionic acid, and carbocation reacts with veratrole from the liq-
uid phase within the pore space. The energy of activation was found
to be 7.32 kcal/mol.
y = 0.0059x
R2 = 0.9843
y = 0.0039x
R2 = 0.9869
Acknowledgments
y = 0.0031x
R2 = 0.9884
0.08
0.06
0.04
0.02
0
G.D.Y. acknowledges support from Darbari Seth Professor
Endowment, R.T. Mody Distinguished Professor Endowment of ICT
and J.C. Bose National Fellowship of Department of Science and
Technology, Govt. of India. S.R.M. is thankful to World-Bank’s Tech-
nical Education Quality Improvement Program (TEQIP), for the
award of a Junior Research Fellowship & Research Grant during
this work.
y = 0.0021x
R2 = 0.9939
0
10
50° C
20
30
40
References
Time (min)
[1] G.A. Olah, Friedel–Crafts and Related Reactions, 1–4, Wiley-Interscience, New
York, 1963/1964.
[2] J.I. Kroschwitz, M. Howe-Grant, Encyclopedia of Chemical Technology, 2, 4th
ed., Wiley-Interscience, New York, 1991, pp. 213.
60° C
70° C
80° C
Fig. 12. Plot of −ln(1 − XA) + M ln[(M − XA)/M] vs time for M =/ 1.
[3] T. Yamaguchi, Appl. Catal. 61 (1990) 1–25.
[4] H.C. Brown, G. Marino, J. Am. Chem. Soc. 81 (1959) 3308–3310.
[5] G.A. Olah, R. Malhotra, S.C. Narang, J.A. Olah, Synthesis 132 (1978) 672.
[6] P. Laszlo, M.T. Montaufier, Tetrahedron Lett. 32 (12) (1991) 1561–1564.
[7] K. Tanabe, T. Yamaguchi, Proceedings of the 8th International Congress on
Catalysis, Verlag Chemie, Berlin, 1984, p. 601.
Case (a): for M = 1,
1
XA
kSRKBwt
ln(1 − XA) +
=
(17)
(1 − KB) (1 − XA)
(1 − KB)
[8] K. Arata, M. Hino, Appl. Catal. 59 (1) (1990) 197–204.
[9] K. Arata, K. Yabe, I. Toyoshima, J. Catal. 44 (3) (1976) 385–391.
[10] A.P. Singh, P. Moreau, T. Jaimol, A.V. Ramaswamy, Appl. Catal. A 214 (1) (2001)
1–10.
Case (b): for KB ꢂ 1
XA
ln(1 − XA) +
(1 − XA)
= kSRKBwt
(18)
[11] G.D. Yadav, J.J. Nair, Microporous Mesoporous Mater. 33 (1–2) (1999) 1–48.
[12] G.D. Yadav, T.S. Thorat, Ind. Eng. Chem. Res. 35 (1996) 721–732.
[13] G.D. Yadav, P.H. Mehta, Ind. Eng. Chem. Res. 33 (1994) 2198–2208.
[14] G.D. Yadav, T.S. Thorat, P.S. Kumbhar, Tetrahedron Lett. 34 (1993) 529–532.
[15] G.D. Yadav, B. Kundu, Can. J. Chem. Eng. 79 (2001) 805–812.
[16] G.D. Yadav, A.A. Pujari, Green Chem. 1 (2) (1999) 69–74.
[17] G.D. Yadav, J.J. Nair, Chem. Commun. (1998) 2369–2370.
[18] G.D. Yadav, M.S. Krishnan, Ind. Eng. Chem. Res. 27 (1998) 3358–3365.
[19] G.D. Yadav, T.S. Thorat, Tetrahedron Lett. 37 (1996) 5405–5408.
[20] G.D. Yadav, A.D. Murkute, Adv. Synth. Catal. 346 (4) (2004) 389–394.
[21] G.D. Yadav, A.D. Murkute, Langmuir 20 (26) (2004) 11607–11619.
[22] G.D. Yadav, S.S. Salgaonkar, Microporous Mesoporous Mater. 80 (1–3) (2005)
129–137.
[23] G.D. Yadav, A.D. Murkute, J. Catal. 224 (1) (2004) 218–223.
[24] G.D. Yadav, A.D. Murkute, J. Phys. Chem. 108 (44) (2004) 9557–9566.
[25] G.D. Yadav, H.G. Manyar, Microporous Mesoporous Mater. 63 (1–3) (2003)
85–96.
[26] Z. El Berrichi, L. Cherif, O. Orsen, J. Fraissard, J.P. Tessonnier, E. Vanhaecke, B.
Louis, M.J. Ledoux, C. Pham-Huu, Appl. Catal. A 298 (2006) 194–202.
[27] G.D. Yadav, M.S.M. Mujeebur Rehuman, Ultrason. Sonochem. 10 (3) (2003)
135–138.
Case (c): M =/ 1,
ꢂ
ꢃ
ꢂ
ꢃ
ꢂ
ꢃ
M
M − XA
kSRKB(M − 1)wt
KB(M − 1) + 1
− ln(1 − XA) +
ln
=
KB(M − 1) + 1
M
(19)
Case (d): for very small values of KB, KB(M − 1) + 1 ≈ 1
ꢂ
− ln(1 − XA) + M ln
(20)
M
These models were validated against the experimental data.
It was found that the adsorption of B was very weak (KB ꢂ 1)
and thus Eq. (18) for M = 1 (Fig. 11) and Eq. (20) for M =/ 1 (Fig. 12)
fit the data very well (Scheme 1).
4. Conclusion
[28] G.D. Yadav, S.P. Nalawade, Chem. Eng. Sci. 58 (12) (2003) 2573–2585.
[29] P.S. Kumbhar, G.D. Yadav, Chem. Eng. Sci. 44 (11) (1989) 2535–2544.
[30] R.C. Reid, M.J. Prausnitz, T.K. Sherwood, The Properties of Gases and Liquids,
3rd ed., McGraw-Hill, New York, 1977.
The Friedel–Crafts acylation of veratrole with propionic anhy-
dride was studied at 80 ◦C over a variety of solid acid catalysts
such as UDCaT-4, UDCaT-5 and UDCaT-6. UDCaT-5 was the most
[31] G.D. Yadav, N.S. Asthana, Ind. Eng. Chem. Res. 41 (23) (2002) 5565–5575.