D
V. S. Mityanov and co-workers
Letter
Synlett
Note that the previously obtained ylidene 7, based on
cyclohexanone, can also be introduced into the reaction to
give 4a in 61% yield (Scheme 6). However, 1,1-difluoro-
alkenes containing an aliphatic instead of an aromatic sub-
stituent have been shown to be completely inert with re-
spect to the imidazole N-oxide, even under rather harsh
conditions (DMF, 100 °C, 7 d).4f
(4) (a) Mlostoń, G.; Gendek, T.; Heimgartner, H. Helv. Chim. Acta
1998, 81, 1585. (b) Mlostoń, G.; Gendek, T.; Heimgartner, H. Tet-
rahedron 2000, 56, 5405. (c) Mlostoń, G.; Jasiński, M.;
Heimgartner, H. Eur. J. Org. Chem. 2011, 2542. (d) Loska, R.;
Mąkosza, M. Mendeleev Commun. 2006, 16, 161. (e) Loska, R.;
Mąkosza, M. Chem. Eur. J. 2008, 14, 2577. (f) Loska, R.;
Szachowicz, K.; Szydlik, D. Org. Lett. 2013, 15, 5706. (g) Loska,
R.; Bukowska, P. Org. Biomol. Chem. 2015, 13, 9872. (h) Szpunar,
M.; Loska, R. Eur. J. Org. Chem. 2015, 2133. (i) Mlostoń, G.;
Jasiński, M.; Linden, A.; Heimgartner, H. Helv. Chim. Acta 2006,
89, 1304.
(5) (a) Mityanov, V. S.; Kutasevich, A. V.; Krayushkin, M. M.;
Lichitsky, B. V.; Dudinov, A. A.; Komogortsev, A. N.; Kuzmina, L.
G. Tetrahedron Lett. 2016, 57, 5315. (b) Mityanov, V. S.;
Kutasevich, A. V.; Krayushkin, M. M.; Lichitsky, B. V.; Dudinov,
A. A.; Komogortsev, A. N.; Koldaeva, T. Y.; Perevalov, V. P. Tetra-
hedron 2017, 73, 6669. (c) Kutasevich, A. V.; Perevalov, V. P.;
Mityanov, V. S.; Lichitsky, B. V.; Komogortsev, A. N.; Krayushkin,
M. M.; Koldaeva, T. Y.; Miroshnikov, V. S. Chem. Heterocycl.
Compd. (Engl. Transl.) 2019, 55, 147.
CO2Et
CN
4a, 61%
1a
+
DMF
100 °C, 5 h
7
Scheme 6 Reaction of N-oxide 1a with ethyl cyano(cyclohexylidene)-
acetate (7)
In summary, therefore, we have identified the possibility
of condensation of 2-unsubstituted imidazole N-oxides
with ethyl cyanoacetate and related nitriles in the presence
of an aromatic aldehyde that plays the role of a catalyst. Fur-
ther investigations of this reaction are currently ongoing.
(6) CCDC 1948977 contains the supplementary crystallographic
data for compound 4a. The data can be obtained free of charge
from The Cambridge Crystallographic Data Centre via
(7) Antonova, M. M.; Baranov, V. V.; Kravchenko, A. N. Chem. Het-
erocycl. Compd. (Engl. Transl.) 2015, 51, 395.
Supporting Information
(8) Compounds 4a–n; General Procedure
Supporting information for this article is available online at
A solution of the appropriate imidazole N-oxide 1 (1 mmol),
nitrile 3 (1 mmol), and aldehyde 2 (1 mmol) in DMF (4 mL) was
stirred at 100 °C for 5 h. The solvent was removed under
reduced pressure, and the residue was purified by column chro-
matography (silica gel, EtOAc).
S
u
p
p
orti
n
gInformati
o
n
S
u
p
p
orit
n
gInformati
o
n
References and Notes
Ethyl (2E)-(1-Benzyl-4,5-dimethyl-1,3-dihydro-2H-imidazol-
2-ylidene)(cyano)acetate (4a)
(1) (a) Nikitina, P. A.; Perevalov, V. P. Chem. Heterocycl. Compd.
(Engl. Transl.) 2017, 53, 123. (b) Mlostoń, G.; Jasiński, M.;
Wróblewska, A.; Heimgartner, H. Curr. Org. Chem. 2016, 20,
1359. (c) Mlostoń, G.; Celeda, M.; Urbaniak, K.; Jasiński, M.;
Bakhonsky, V.; Schreiner, P. R.; Heimgartner, H. Beilstein J. Org.
Chem. 2019, 15, 497. (d) Mlostoń, G.; Romański, J.; Jasiński, M.;
Heimgartner, H. Tetrahedron: Asymmetry 2009, 20, 1073.
(2) (a) Campeau, L.-C.; Stuart, D. R.; Leclerc, J.-P.; Bertrand-Laperle,
M.; Villemure, E.; Sun, H.-Y.; Lasserre, S.; Guimond, N.;
Lecavallier, M.; Fagnou, K. J. Am. Chem. Soc. 2009, 131, 3291.
(b) Campeau, L.-C.; Bertrand-Laperle, M.; Leclerc, J.-P.;
Villemure, E.; Gorelsky, S.; Fagnou, K. J. Am. Chem. Soc. 2008,
130, 3276.
(3) (a) Adiulin, E. I.; Kutasevich, A. V.; Mityanov, V. S.; Tkach, I. I.;
Koldaeva, T. Y. Chem. Heterocycl. Compd. (Engl. Transl.) 2015, 51,
500. (b) Ferguson, I. J.; Schofield, K. J. Chem. Soc., Perkin Trans. 1
1975, 275. (c) Wróblewska, A.; Mlostoń, G.; Heimgartner, H. Tet-
rahedron: Asymmetry 2015, 26, 505. (d) Antonova, M. M.;
Baranov, V. V.; Nelyubina, Y. V.; Kravchenko, A. N. Chem. Hetero-
cycl. Compd. (Engl. Transl.) 2014, 50, 1203. (e) Mlostoń, G.;
Wróblewska, A.; Heimgartner, H. J. Fluorine Chem. 2016, 189, 1.
(f) Laufer, S.; Wagner, G.; Kotschenreuther, D. Angew. Chem. Int.
Ed. 2002, 41, 2290.
White solid; yield: 255 mg (86%); mp 164–166 °C. IR (KBr):
3208, 2983, 2183 (CN), 1639, 1568, 1475, 1440, 1369, 1321,
1305, 1261, 1248, 1209, 1132, 1087, 1034, 975, 779, 732, 705,
693, 533, 457 cm–1. 1H NMR (300 MHz, DMSO-d6): = 11.91 (s,
1 H), 7.40–7.25 (m, 2 H), 7.05 (d, J = 7.1 Hz, 3 H), 5.41 (s, 2 H),
4.06 (q, J = 7.1 Hz, 2 H), 2.12 (s, 3 H), 1.95 (s, 3 H), 1.17 (t, J = 7.1
Hz, 3 H). 13C NMR (151 MHz, DMSO-d6): = 168.40, 145.23,
136.31, 128.72, 127.44, 126.61, 125.98, 121.11, 120.75, 120.08,
58.38, 46.33, 14.71, 8.91, 7.85. HRMS-ESI: m/z [M + H]+ calcd for
C
17H20N3O2: 298.1555; found: 298.1550.
(1-Benzyl-4,5-dimethyl-1,3-dihydro-2H-imidazol-2-
ylidene)[(4-chlorophenyl)sulfonyl]acetonitrile (4n)
White solid; yield: 204 mg (51%); mp 203–205 °C. IR (KBr):
3294, 2160 (CN), 1651, 1558, 1474, 1435, 1389, 1335, 1312,
1296, 1273, 1142, 1088, 1049, 1011, 933, 825, 795, 756, 717,
633, 579, 478 cm–1. 1H NMR (400 MHz, DMSO-d6): = 12.44 (s,
1 H), 7.58 (d, J = 11.1 Hz, 2 H), 7.49 (d, J = 11.2 Hz, 2 H), 7.34–
7.06 (m, 3 H), 6.81 (d, J = 8.1 Hz, 2 H), 5.22 (s, 2 H), 2.15 (s, 3 H),
1.94 (s, 3 H). 13C NMR (101 MHz, DMSO-d6): = 147.63, 143.24,
138.95, 138.03, 132.00, 131.47, 130.39, 129.49, 128.84, 126.46,
126.01, 122.83, 54.62, 49.75, 11.86, 11.04. HRMS-ESI: m/z [M +
H]+ calcd for C20H19ClN3O2S: 400.0886; found: 400.0881.
© 2019. Thieme. All rights reserved. Synlett 2019, 30, A–D