Edge Article
Chemical Science
Soc., 1976, 98, 2868; (d) R. E. Ireland, P. Wipf and
J. D. Armstrong III, J. Org. Chem., 1991, 56, 650.
7 C. M. McFarland and M. C. McIntosh, The Claisen
Rearrangement, Wiley-VCH, Weinheim, 2007, pp. 117–210.
Chem., Int. Ed., 2018, 57, 15430; (d) C. Shu, A. Noble and
V. K. Aggarwal, Angew. Chem., Int. Ed., 2019, 58, 3870; (e)
R. Abrams and J. Clayden, Angew. Chem., Int. Ed., 2020, 59,
11600.
8 K. C. Majumdar and R. K. Nandi, Tetrahedron, 2013, 69, 6921. 16 For
selected
examples
on
nickel-catalyzed
9 S. P. Miller and J. P. Morken, Org. Lett., 2002, 4, 2743.
10 (a) Y. Aoki and I. Kuwajima, Tetrahedron Lett., 1990, 31, 7457;
(b) M. Eriksson, M. Nilsson and T. Olsson, Synlett, 1994, 271;
(c) M. Eriksson, A. Hjelmencrantz, M. Nilsson and T. Olsson,
Tetrahedron, 1995, 51, 12631; (d) C. C. Bausch and
J. S. Johnson, J. Org. Chem., 2008, 73, 1575. For other
carbon-nucleophiles, see: (e) T. Yamazaki, N. Shinohara,
T. Kitazume and S. Sato, J. Org. Chem., 1995, 60, 8140; (f)
C. Schmidt and U. Kazmaier, Org. Biomol. Chem., 2008, 6,
4643. For a radical approach, see: (g) K. Takai, T. Ueda,
H. Kaihara, Y. Sunami and T. Moriwake, J. Org. Chem.,
1996, 61, 8728.
dicarbofunctionalization of acrylates, see: (a) T. Qin,
J. Cornella, C. Li, L. R. Malins, J. T. Edwards, S. Kawamura,
B. D. Maxwell, M. D. Eastgate and P. S. Baran, Science,
´
´
2016, 352, 801; (b) A. Garcıa-Domınguez, Z. Li and
´
C. Nevado, J. Am. Chem. Soc., 2017, 139, 6835; (c) A. Garcıa-
´
Domınguez, R. Mondal and C. Nevado, Angew. Chem., Int.
Ed., 2019, 58, 12286. For related reports, see: (d)
M. W. Campbell, J. S. Compton, C. B. Kelly and
G. A. Molander, J. Am. Chem. Soc., 2019, 141, 20069; (e)
R. S. Mega, V. K. Duong, A. Noble and V. K. Aggarwal,
Angew. Chem., Int. Ed., 2020, 59, 4375.
17 (a) P. Zhang, C. Le and D. W. C. MacMillan, J. Am. Chem. Soc.,
2016, 138, 8084; (b) T. Constantin, M. Zanini, A. Regni,
11 For selected reviews on photocatalysis, see: (a) C. K. Prier,
D. A. Rankic and D. W. C. MacMillan, Chem. Rev., 2013,
´
N. S. Sheikh, F. Julia and D. Leonori, Science, 2020, 367, 1021.
113, 5322; (b) N. A. Romero and D. A. Nicewicz, Chem. Rev., 18 F. Clausen, M. Kischkewitz, K. Bergander and A. Studer,
2016, 116, 10075; (c) M. H. Shaw, J. Twilton and Chem. Sci., 2019, 10, 6210.
D. W. C. MacMillan, J. Org. Chem., 2016, 81, 6898. For 19 4CzIPN, Ir-1 and Ir-2 were chosen upon their redox
a review on photoredox-mediated radical generation, see:
(d) J. K. Matsui, S. B. Lang, D. R. Heitz and G. A. Molander,
ACS Catal., 2017, 7, 2563.
potentials and their privileged use in photocatalytic
RRPCO transformations, see i.e. ref. 15a, d and 18.
Thereby, their ability to be (strong) oxidants in the excited
state (oxidative radical generation) and strong reductants
in the reduced state (RRPCO step) is exploited (see
Mechanistic studies).
12 B. Giese, Angew. Chem., Int. Ed. Engl., 1983, 22, 753.
13 For a recent review on photocatalytic RRPCO, see: (a)
L. Pitzer, J. L. Schwarz and F. Glorius, Chem. Sci., 2019, 10,
8285. For
crossover, see: (b) R. J. Wiles and G. A. Molander, Isr. J. 21 L. Pitzer, F. Schafers and F. Glorius, Angew. Chem., Int. Ed.,
Chem., 2020, 60, 281. 2019, 58, 8572.
14 For selected examples, see: (a) K. Okada, K. Okamoto, 22 M. Buschleb, S. Dorich, S. Hanessian, D. Tao, K. B. Schenthal
N. Morita, K. Okubo and M. Oda, J. Am. Chem. Soc., 1991, and L. E. Overman, Angew. Chem., Int. Ed., 2016, 55, 4156.
113, 9401; (b) Y. Miyake, K. Nakajima and Y. Nishibayashi, 23 (a) Z. Wang, C.-Y. Guo, C. Yang and J.-P. Chen, J. Am. Chem.
a
review on photocatalytic radical-polar 20 F. W. Friese and A. Studer, Chem. Sci., 2019, 10, 8503.
¨
¨
J. Am. Chem. Soc., 2012, 134, 3338; (c) Y. Miyake, Y. Ashida,
K. Nakajima and Y. Nishibayashi, Chem. Commun., 2012,
48, 6966; (d) L. Chu, C. Ohta, Z. Zuo and
Soc., 2019, 141, 5617; (b) H. Wang, C.-F. Liu, Z. Song,
M. Yuan, Y. A. Ho, O. Gutierrez and M. J. Koh, ACS Catal.,
2020, 10, 4451.
D. W. C. MacMillan, J. Am. Chem. Soc., 2014, 136, 10886; 24 T. Gensch, M. Teders and F. Glorius, J. Org. Chem., 2017, 82,
(e) T. Chinzei, K. Miyazawa, Y. Yasu, T. Koike and 9154.
M. Akita, RSC Adv., 2015, 5, 21297; (f) C. C. Nawrat, 25 For a review about a-silyl amines as radical precursors in
C. R. Jamison, Y. Slutskyy, D. W. C. MacMillan and
L. E. Overman, J. Am. Chem. Soc., 2015, 137, 11270; (g)
H. Huo, K. Harms and E. Meggers, J. Am. Chem. Soc., 2016,
138, 6936; (h) A. Millet, Q. Lefebvre and M. Rueping,
Chem.–Eur. J., 2016, 22, 13464; (i) N. P. Ramirez and
J. C. Gonzalez-Gomez, Eur. J. Org. Chem., 2017, 2154; (j)
F. Lima, U. K. Sharma, L. Grunenberg, D. Saha,
photoredox catalysis, see: (a) K. Nakajima, Y. Miyake and
Y. Nishibayashi, Acc. Chem. Res., 2016, 49, 1946. For
selected examples, see: (b) S.-Y. Hsieh and J. W. Bode, Org.
Lett., 2016, 18, 2098; (c) C. Remeur, C. B. Kelly, N. R. Patel
and G. A. Molander, ACS Catal., 2017, 7, 6065; (d)
S. B. Lang, R. J. Wiles, C. B. Kelly and G. A. Molander,
Angew. Chem., Int. Ed., 2017, 56, 15073. See also ref. 14c.
´˜
S. Johannsen, J. Sedelmeier, E. V. V. d. Eycken and 26 M. Ordonez, C. Cativiela and I. Romero-Estudillo,
S. V. Ley, Angew. Chem., Int. Ed., 2017, 56, 15136; (k) Tetrahedron: Asymmetry, 2016, 27, 999.
A. Noble, R. S. Mega, D. Pasterer, E. L. Myers and 27 D.-H. Ngo and T. S. Vo, Molecules, 2019, 24, 2678.
¨
V. K. Aggarwal, Angew. Chem., Int. Ed., 2018, 57, 2155.
15 For selected examples, see: (a) V. R. Yatham, Y. Shen and
R. Martin, Angew. Chem., Int. Ed., 2017, 56, 10915; (b)
J. P. Phelan, S. B. Lang, J. S. Compton, C. B. Kelly,
R. Dykstra, O. Gutierrez and G. A. Molander, J. Am. Chem.
Soc., 2018, 140, 8037; (c) C. Shu, R. S. Mega,
B. J. Andreassen, A. Noble and V. K. Aggarwal, Angew.
28 The respective a-(halomethyl)amine precursors are instable
and therefore typically harsh transmetalation conditions
starting from the corresponding Sn compounds with Li
organyls have to be applied. (a) D. Seebach and D. Enders,
Angew. Chem., Int. Ed. Engl., 1975, 14, 15; (b) D. J. Peterson,
J. Am. Chem. Soc., 1971, 93, 4027. See also: (c) J. L. Schwarz,
© 2021 The Author(s). Published by the Royal Society of Chemistry
Chem. Sci., 2021, 12, 2816–2822 | 2821