Figure 1. Monodentate phosphonites, phosphites, and phosphora-
midites.
prepared in one or two steps at low costs, which makes
variations very easy.
All successful monodentate ligands recently introduced
consist of a chiral diol backbone, with another chiral or
achiral moiety attached to phosphorus.11 The chirality of the
backbone dictates, in nearly all cases, the chirality of the
product.10b The chirality of the other moiety at phosphorus
is found to be less important. It is illustrative that one of the
most effective monodentate ligands for hydrogenation reac-
tions, the commercially available12 phosphoramidite Mono-
Phos (3), has, besides the chiral BINOL part, an achiral N,N-
dimethylamine moiety. A few reports on alternative ligands
using chiral backbones such as biphenyls or spiro compounds
have appeared.13
We now describe a new class of monodentate phosphora-
midites for the rhodium-catalyzed asymmetric hydrogenation
of enamides, based on an achiral catechol backbone. In this
case, the chirality of the products must be dictated solely by
the chirality of the amine moiety. Not only is the chiral
moiety the amine instead of the diol but also the bulkiness
Figure 2. Catechol-based phosphoramidites.
of the diol backbone is reduced, as a planar catechol is
present whereas the size of the amine moiety is increased
compared to MonoPhos (3). From earlier results it was
evident that, in the case of BINOL-derived phosphoramidites,
a small amine moiety is favored for the hydrogenation of
dehydroamino acids.10c,11c
The synthesis of the ligands is straightforward, starting
with the commercially available o-phenylene phosphoro-
chloridite (4) and an appropriate amine. A variety of easily
accessible chiral amines, based on 1-phenyl ethylamine, were
used in the preparation of ligands L1-6 (Figure 2). The
cyclic analogue L7 of ligand L1 was obtained from the
corresponding chiral amine.14 For comparison, bidentate
ligands L8 and L9 were also examined.
(11) (a) Komarov, I. V.; Bo¨rner, A. Angew. Chem., Int. Ed. 2001, 40,
1197. (b) Reetz, M. T.; Mehler, G.; Meiswinkel, A.; Sell, T. Tetrahedron
Lett. 2002, 43, 7941. (c) Jia, X.; Li, X.; Xu, L.; Shi, Q.; Yao, X.; Chan, A.
S. C. J. Org. Chem. 2003, 68, 4539. (d) Reetz, M. T.; Sell, T.; Meiswinkel,
A.; Mehler, G. Angew. Chem., Int. Ed. 2003, 42, 790. (e) van den Berg,
M.; Minnaard, A. J.; Haak, R. M.; Leeman, M.; Schudde, E. P.; Meetsma,
A.; Feringa, B. L.; de Vries, A. H. M.; Maljaars, C. E. P.; Willans, C. E.;
Hyett, D.; Boogers, J. A. F.; Henderickx, H. J. W.; de Vries, J. G. AdV.
Synth. Catal. 2003, 345, 308. (f) Li, X.; Jia, X.; Lu, G.; Au-Yeung, T.
T.-L.; Lam, K.-H.; Lo, T. W. H.; Chan, A. S. C. Tetrahedron: Asymmetry
2003, 14, 2687. (g) Jia, X.; Guo, R.; Li, X.; Yao, X.; Chan, A. S. C.
Tetrahedron Lett. 2002, 43, 5541. (h) Chen, W.; Xiao, J. Tetrahedron Lett.
2001, 42, 2897. (i) Junge, K.; Oehme, G.; Monsees, A.; Riermeier, T.;
Dingerdissen, U.; Beller, M. Tetrahedron Lett. 2002, 43, 4977. (j) Pen˜a,
D.; Minnaard, A. J.; de Vries, J. G.; Feringa, B. L. J. Am. Chem. Soc. 2002,
124, 14552. (k) Pen˜a, D.; Minnaard, A. J.; de Vries, A. H. M.; de Vries, J.
G.; Feringa, B. L. Org. Lett. 2003, 5, 475. (l) Doherty, S.; Robins, E. G.;
Pa´l, I.; Newman, C. R.; Hardacre, C.; Rooney, D.; Mooney, D. A.
Tetrahedron: Asymmetry 2003, 14, 1517. (m) Junge, K.; Oehme, G.;
Monsees, A.; Riermeier, T.; Dingerdissen, U.; Beller, M. J. Organomet.
Chem. 2003, 675, 91. (n) Reetz, M. T.; Mehler, G. Tetrahedron Lett. 2003,
44, 4593. (o) Reetz, M. T.; Goossen, L. J.; Meiswinkel, A.; Paetzold, J.;
Jensen, J. F. Org. Lett. 2003, 5, 3099. (p) Pen˜a, D.; Minnaard, A. J.; Boogers,
J. A. F.; de Vries, A. H. M.; de Vries, J. G.; Feringa, B. L. Org. Biomol.
Chem. 2003, 1, 1087. (q) Ostermeier, M.; Brunner, B.; Korff, C.; Helmchen,
G. Eur. J. Org. Chem. 2003, 3453. (r) Van den Berg, M.; Haak, R. M.;
Minnaard, A. J.; De Vries, A. H. M.; De Vries, J. G.; Feringa, B. L. AdV.
Synth. Catal. 2002, 344, 1003.
As a benchmark reaction, the ligands were tested in the
rhodium-catalyzed asymmetric hydrogenation of N-acyl
dehydrophenylalanine methyl ester (5) under standard condi-
tions.15 The results are depicted in Table 1.
The catalysts based on ligands L2-6 gave modest to full
conversions, while the ligand L1, based on a sterically
demanding amine, surprisingly gave no conversion at all.
The enantiomeric excesses are disappointing in all cases
(entries 1-6). In sharp contrast, however, is the excellent
yield and enantioselectivity of >92% reached with ligand
L7 (entry 7). Although L1 and L7 have a similar kind of
structure, a remarkable difference in activity was observed
by introduction of a ring structure in the ligand. The bidentate
ligands L8 and L9 gave full conversion but rather poor ees,
although a longer spacer in the ligand resulted in a slightly
higher ee (entries 8 and 9, Table 1).
To expand the scope of the catalytic hydrogenation
employing L7, several substrates were tested. As shown in
(12) MonoPhos (3) is commercially available from Strem chemicals.
(13) (a) Chen, W.; Xiao, J. Tetrahedron Lett. 2001, 42, 8737. (b) Fu,
Y.; Xie, J.-H.; Hu, A.-G.; Zhou, H.; Wang, L.-X.; Zhou, Q.-L. Chem.
Commun. 2002, 480. (c) Hu, A.-G.; Fu Y.; Xie, J.-H.; Zhou, H. Wang,
L-X.; Zhou, Q.-L. Angew. Chem., Int. Ed. 2002, 41, 2348. (d) Hannen,
P.; Militzer, H.-C.; Vogl, E. M.; Rampf, F. A. Chem. Commun. 2003, 2210.
(e) Hua, Z.; Vassar, V. C.; Ojima, I. Org. Lett. 2003, 5, 3831.
(14) Aldous, D. J.; Dutton, W. M.; Steel, P. G. Tetrahedron: Asymmetry
2000, 11, 2455.
(15) Standard conditions are 0.2 mmol of substrate, 1 mol % catalyst
(L:Rh ) 2:1) in 4 mL of CH2Cl2 at rt and 5 bar of H2 pressure.
1434
Org. Lett., Vol. 6, No. 9, 2004