ChemComm
Communication
a
Table
2
Device characteristics of PSCs under AM1.5 conditions (87%) 4 P3HT:bis-BIEC (84%) (Fig. S9, ESI†), i.e., the generated
À2
(100 mW cm
)
excitons reach the P3HT–fullerene interface most efficiently in
P3HT:cis-2-BIEC with the smallest domain size. The P3HT:cis-2-BIEC
film would be suitable for forming more effective bicontinuous
donor–acceptor networks, giving rise to the highest JSC and PCE
À2
Acceptor
J
SC/mA cm
VOC/V
FF
PCE/%
cis-2-BIEC
bis-BIEC
mono-BIEC
6.60 Æ 0.30
4.70 Æ 0.35
5.15 Æ 0.08
7.50 Æ 0.54
0.80 Æ 0.03
0.80 Æ 0.01
0.61 Æ 0.01
0.61 Æ 0.01
0.53 Æ 0.04
0.47 Æ 0.03
0.51 Æ 0.02
0.57 Æ 0.02
2.8 Æ 0.2
1.8 Æ 0.2
1.6 Æ 0.1 in the corresponding three devices.
[
60]PCBM
2.6 Æ 0.2
In conclusion, the synthesis and isolation of a regioisomerically
a
The photovoltaic parameters were averaged from more than ten pure cis-2 1,2-bis(3-indenyl)ethane–C60 adduct, cis-2-BIEC, have
independent solar cells.
been achieved by the tether-directed functionalization method.
In the BHJ PSC devices with P3HT, cis-2-BIEC showed the PCE of
2.8% with the high VOC of 0.80 V, outperforming the devices with
the corresponding regioisomer mixture (bis-BIEC) and the BIE–C60
adduct with one unreacted indene unit (mono-BIEC). These results
demonstrate that cis-2 isomers of fullerene bis-adducts are highly
promising as excellent electron-acceptors in BHJ PSC devices.
Because the rather bulky ethylene-tethered indene addend may
lessen the fullerene–fullerene contact and decrease JSC in PSCs,
molecular design targeted at the smallest possible addend with
cis-configurations is currently under investigation.
This work is supported by New Energy and Industrial
Technology Development Organization (NEDO) and Grand-in-
Aid (No. 25220801 to H.I.). The synchrotron radiation experi-
ments were performed at the BU46XU of SPring-8 with the
approval of the Japan Synchrotron Radiation Research Institute
8
c,14
sterically-bulky BIE addend.
the cis-2-BIEC-based device (6.60 mA cm ) is still increased
significantly compared to the bis-BIEC -device (4.70 mA cm
and P3HT:mono-BIEC-based device (5.15 mA cm ). Consistently,
the incident photon-to-current efficiency (IPCE) value of the cis-2-
BIEC-based device was higher than those of bis-BIEC- and mono-
BIEC-based ones (Fig. 3b), despite the analogous light-harvesting
properties of the blend films (Fig. S7, ESI†). Electron mobilities
of the composite films P3HT:cis-2-BIEC, P3HT:bis-BIEC and
P3HT:mono-BIEC, which were estimated by the space charge-
Note here that the JSC value of
À2
À2
)
À2
6b
À5
À5
limited current (SCLC) method, are 3.5 Â 10 , 2.5 Â 10 and
À5
2
À1 À1
2
.7 Â 10 cm V
s
respectively. They are in accord with the
J
SC
values, suggesting that the regioisomerically pure, relatively
compact structure of cis-2-BIEC formed a well-packed structure
in the composite film as illustrated in Fig. 2b, thereby leading to
more efficient charge transportation and the higher JSC value
(JASRI) (Proposal No. 2014B1616 and 2014B1596).
6
Notes and references
than bis-BIEC and mono-BIEC.
The isomer effect of the BIE–C60 adducts on the molecular ‡ Crystallographic data for cis-2-BIEC: C80H18ÁC H Cl , M = 1146.78,
2
2
4
r
orthorhombic, Pbca (No. 61), a = 17.0287(17) Å, b = 18.1277(17) Å,
c = 29.437(3) Å, V = 9086.8(15) Å , rcalcd = 1.677 g cm , Z = 8,
ordering of P3HT in the composite films was assessed by grazing
incidence wide-angle X-ray scattering (GIWAXS) (Fig. S8, ESI†). The
3
À3
7
1 139 reflections measured, 10 374 unique (Rint = 0.0341), R = 0.0495
1
GIWAXS profiles from the P3HT:cis-2-BIEC, P3HT:bis-BIEC, and [I 4 2s(I)], wR = 0.1372 (all data), GOF = 1.048. CCDC 1050695.
2
P3HT:mono-BIEC films exhibit out-of-plane (l00) and in-plane (010)
1
(a) Y. He and Y. Li, Phys. Chem. Chem. Phys., 2011, 13, 1970; (b) Y. Li,
Chem. – Asian J., 2013, 8, 2316; (c) C. L. Chochos, N. Tagmatarchis
and V. G. Gregoriou, RSC Adv., 2013, 3, 7160; (d) T. Umeyama and
H. Imahori, J. Mater. Chem. A, 2014, 2, 11545.
(a) M. S. Scharber, D. M u¨ hlbacher, M. Koppe, P. Denk, C. Waldauf,
A. J. Heeger and C. J. Brabec, Adv. Mater., 2006, 18, 789; (b) B. Qi and
J. Wang, J. Mater. Chem., 2012, 22, 24315.
(a) M. Lenes, G.-J. A. H Wetzelaer, F. B. Kooistra, S. C. Veenstra, J. C.
Hummelen and P. W. Blom, Adv. Mater., 2008, 20, 2116; (b) M. Lenes,
S. W. Shelton, A. B. Sieval, D. F. Kronholm, J. C. Hummelen and
P. W. M. Blom, Adv. Funct. Mater., 2009, 19, 3002; (c) C. Liu, S. Xiao,
X. Shu, Y. Li, L. Xu, T. Liu, Y. Yu, L. Zhang, H. Liu and Y. Li, ACS Appl.
Mater. Interfaces, 2012, 4, 1065.
(a) Y. He, H.-Y. Chen, J. Hou and Y. Li, J. Am. Chem. Soc., 2010, 132, 1377;
(b) S.-H. Liao, Y.-L. Li, T.-H. Jen, Y.-S. Cheng and S.-A. Chen, J. Am.
Chem. Soc., 2012, 134, 14271; (c) J. You, L. Dou, K. Yoshimura, T. Kato,
K. Ohya, T. Moriarty, K. Emery, C.-C. Chen, J. Gao, G. Li and Y. Yang,
Nat. Commun., 2013, 4, 1446.
reflection patterns. These results imply that P3HT forms a lamellar
structure oriented edge-on with the substrate irrespective of the
fullerene isomers. Meanwhile, to shed light on the relationship
between film structures and device performances, surface morphol-
ogy of the P3HT:fullerene films was evaluated by atomic force
microscopy (AFM, Fig. 4). The surface roughness increases in the
order of P3HT:cis-2-BIEC (rms = 2.1 nm) o P3HT:mono-BIEC
2
3
(
3.0 nm) o P3HT:bis-BIEC (5.4 nm), showing that the fullerene
isomer affects the domain size in the composite films. This trend
correlates well with the quenching efficiency of P3HT fluorescence
in the composite films, P3HT:cis-2-BIEC (90%) 4 P3HT:mono-BIEC
4
5
6
(a) M. T. Dang, L. Hirsch, G. Wantz and J. D. Wuest, Chem. Rev.,
2013, 113, 3734; (b) K. A. Mazzio and C. K. Luscombe, Chem. Soc.
Rev., 2015, 44, 78.
(a) S. Kitaura, K. Kurotobi, M. Sato, Y. Takano, T. Umeyama and
H. Imahori, Chem. Commun., 2012, 48, 8550; (b) R. Tao, T. Umeyama,
K. Kurotobi and H. Imahori, ACS Appl. Mater. Interfaces, 2014, 6, 17313.
D. S. Sabirov, J. Phys. Chem. C, 2013, 117, 9148.
(a) X. Meng, G. Zhao. Q. Xu, Z. a. Tan, Z. Zhang, L. Jiang, C. Shu,
C. Wang and Y. Li, Adv. Funct. Mater., 2014, 24, 158; (b) Z. Xiao,
Y. Matsuo, I. Soga and E. Nakamura, Chem. Mater., 2012, 24, 2572;
7
8
Fig. 4 Tapping-mode atomic force micrographs of (a) P3HT:cis-2-BIEC,
(
b) P3HT:bis-BIEC, and (c) P3HT:mono-BIEC films on an ITO/PEDOT:PSS
(
c) Y. Matsuo, J. Kawai, H. Inada, T. Nakagawa, H. Ota, S. Otsubo and
substrate. The colour scale represents the height topography, with bright
and dark representing the highest and lowest features, respectively. The
rms surface roughnesses are (a) 2.1, (b) 5.4, and (c) 3.0, respectively.
E. Nakamura, Adv. Mater., 2013, 25, 6266; (d) W. W. H. Wong,
J. Subbiah, J. M. White, H. Seyler, B. Zhang, D. J. Jones and
A. B. Holmes, Chem. Mater., 2014, 26, 1686; (e) M.-H. Liao, Y.-Y. Lai,
This journal is ©The Royal Society of Chemistry 2015
Chem. Commun.