S. Goswami, A. K. Adak / Tetrahedron Letters 46 (2005) 221–224
223
Schwarz, G. J. Biol. Chem. 2004, 279, 15994–15999; (b)
Johnson, J. L.; Wuebbens, M. M.; Rajagopalan, K. V. J.
Biol. Chem. 1989, 264, 13440–13447.
Ac
OAc
Ac 5 N
H
H
4
3
O1
Ac
N
OAc
N
10
5
4a
10a
2
4a
H
H
2
10
OAc
OAc
3. (a) Soyka, von R.; Pfleiderer, W.; Prewo, R. Helv. Chim.
Acta 1990, 73, 808–826; (b) Soyka, R.; Pfleiderer, W.
Pteridines 1990, 2, 63–74.
10a
4
H
OAc
OAc
H
N
O
1
H
H
9b
Ac
4. For recent examples, see: (a) Bradshaw, B.; Collison, D.;
Garner, C. D.; Joule, J. A. Chem. Commun. 2001, 123–
124; (b) Bradshaw, B.; Dinsmore, A.; Ajana, W.; Collison,
D.; Joule, J. A. J. Chem. Soc., Perkin Trans. 1 2001, 3239–
3244; (c) Bradshaw, B.; Dinsmore, A.; Collison, D.;
Garner, C. D.; Joule, J. A. Org. Biomol. Chem. 2003, 1,
129–133.
5. (a) Bradshaw, B.; Dinsmore, A.; Garner, C. D.; Joule, J.
A. Chem. Commun. 1998, 417–418; (b) Bradshaw, B.;
Dinsmore, A.; Collison, D.; Garner, C. D.; Joule, J. A.
J. Chem. Soc., Perkin Trans. 1 2001, 3232–3238.
6. Mamedov, V. A.; Kalinin, A. A.; Gubaidullin, A. T.;
Litvinov, I. A.; Levin, Ya. A. Chem. Heterocyl. Compd.
2003, 39, 96–100.
7. (a) Taylor, E. C.; Goswami, S. P. Tetrahedron Lett. 1991,
32, 7357–7360; (b) Pilato, R. S.; Eriksen, K. E.; Greaney,
M. A.; Stiefel, E. I.; Goswami, S.; Kilpatrick, L.; Spiro, T.
G.; Taylor, E. C.; Rheingold, A. R. J. Am. Chem. Soc.
1991, 113, 9372–9374; (c) Goswami, S. P. Heterocycles
1993, 35, 1551–1572; (d) Goswami, S. P.; Adak, A. K.
Tetrahedron Lett. 2002, 42, 503–505; (e) Goswami, S. P.;
Adak, A. K. Chem. Lett. 2003, 32, 678–679.
Figure 1. Key NOESY interactions observed in 9b.
methine proton signals at d 6.22 ppm (d, J = 3.0 Hz, H-
10a) and at d 5.78 ppm (dd, J = 3.0, 3.0 Hz, H-2), for H-
10a and H-2, respectively, and thus established their cis
relationships. The small coupling constant values
(J = 2.0–3.0 Hz) of H-4a with H-10a, and H-2 also sug-
gested that these protons are cis with an axial–equatorial
arrangement in a chair conformation (see Fig. 1).9d
The instabilities of pyranoquinoxalines or pyranopter-
idines are mainly due to the reversible proton-catalyzed
cleavage of the N–C–O system followed by irreversible
aerial oxidation, which ultimately produces 2- and
6-substituted derivatives.14 Therefore, protection is re-
quired in order to avoid such oxidation of the tricyclic
form. The pyranoquinoxalines 6 are relatively stable
compounds and did not undergo such oxidative cleav-
age to 2-substituted dihydro- or fully oxidized systems
during acetylation as suggested from the 1H NMR stud-
ies of 9.
8. Goswami, S. P.; Adak, A. K. Tetrahedron Lett. 2002, 43,
8371–8373.
9. (a) Viscontini, M.; Provenzale, R.; Olhgart, S. Helv. Chim.
Acta 1970, 53, 1202–1207; (b) Russell, J. R.; Garner, C.
D.; Joule, J. A. Synlett 1992, 711–712, and references cited
therein; (c) Low, J. N.; Lopez, M. D.; Quijano, M. L.;
Sanchez, A.; Nogueras, M. Acta Cryst. 1999, C55, 452–
454; (d) Lopez, M. D.; Quijano, M. L.; Sanchez, A.;
Nogueras, M.; Low, J. N. J. Heterocyl. Chem. 2001, 38,
727–736; (e) For a recent report in this series, see: Guiney,
D.; Gibson, C. L.; Suckling, C. J. Org. Biomol. Chem.
2003, 1, 664–675.
In conclusion, we have developed a novel one-step pro-
cedure for the synthesis of tricyclic pyrano[2,3-b]quinox-
alines, which have the desired side-chain length as found
in MPT of the molybdenum co-factor. Further work on
pteridine derivatives is underway.
Acknowledgements
10. (a) Wolform, M. L.; Christman, C. C. J. Am. Chem. Soc.
1931, 53, 3413–3419; (b) Mester, L.; Messmer, A. Methods
Carbohydr. Chem. 1963, 2, 117–118.
We are thankful to the Council of Scientific and Indus-
trial Research (CSIR), Government of India for finan-
cial support and the Bose Institute, Kolkata for access
to a 500 MHz NMR instrument. A.K.A. acknowledges
CSIR, Government of India for a research fellowship.
11. All compounds gave satisfactory spectroscopic data.
Selected physical data for compound 8c: Pale-yellow solid.
Mp 150–153 ꢁC [lit.10b 154–155 ꢁC]. UV/vis (CHCl3): kmax
(log e): 274 nm (5.0). FT-IR (KBr): 3480, 2925, 1751, 1435,
1374, 1221, 1046, 746 cmÀ1
500 MHz):
.
1H NMR (DMSO-d6,
(ppm) = 10.13 (s, 1H), 7.63 (d, 1H,
d
References and notes
J = 6.3 Hz), 7.51 (t, 2H, J = 7.9 Hz), 7.28 (d, 2H,
J = 7.6 Hz), 7.03 (t, 1H, J = 7.2 Hz), 5.10 (d, 1H, J =
6.2 Hz), 4.79 (t, 2H, J = 5.2 Hz), 4.72 (t, 1H, J = 6.3 Hz),
4.53 (t, 2H, J = 8.9 Hz), 4.10 (q, 1H, J = 6.5 Hz), 3.89
(p, 2H, J = 8.7 Hz), 3.82–3.74 (m, 2H). 13C NMR
(DMSO-d6, 125 MHz): dC (ppm) = 146.72 (d), 143.28,
129.80, 118.82, 112.45, 73.29 (d), 71.08 (d), 70.70 (d), 70.04
(d), 63.92 (d). MS (ESI): m/z (%) = 270 (M+, 8), 149 (32),
108 (9), 93 (100), 65 (10), 28 (27).
1. (a) Chan, M. K.; Mukund, S.; Kletzin, A.; Adams, M. M.
W.; Rees, D. C. Science 1995, 267, 1463–1469; (b) Romao,
M. J.; Archer, M.; Moura, I.; Moura, J. J. G.; LeGall, J.;
Engh, E.; Schneider, M.; Hof, P.; Huber, R. Science 1995,
270, 1170–1176; (c) Schindelin, H.; Kisker, C.; Hilton, J.;
Rajagopalan, K. V.; Rees, D. C. Science 1996, 272, 1615–
1621; (d) Hille, R. Chem. Rev. 1996, 96, 2757–2816; (e)
Boyington, J. C.; Gladyshev, V. N.; Khangulov, S. V.;
Stadtman, T. C.; Sun, P. C. Science 1997, 275, 1305–1308;
(f) Baugh, P. E.; Collison, D.; Garner, C. D.; Joule, J. A.
In Comprehensive Biological Catalysis, 1998; Vol. III, pp
377–400; (g) Hille, R.; Retey, J.; Bartlewski-Hof, U.;
Reichenbecher, W.; Schink, B. FEMS Microbiol. Rev.
1999, 22, 489–501; (h) Li, H.-K.; Temple, C.; Rajagopa-
lan, K. V.; Schindelin, H. J. Am. Chem. Soc. 2000, 122,
7673–7680.
12. Typical experimental procedure for the condensation of
o-phenylenediamine with D-galactose phenylhydrazone.
Synthesis of pyrano[2,3-b]quinoxaline 6c. To a stirred
solution of o-phenylenediamine (0.12 g, 1.11 mmol) in a
50% mixture of methanol–water (20 mL) were added
freshly prepared D-galactose phenylhydrazone (0.33 g,
1.21 mmol), two drops of 2-mercaptoethanol and HCl
(5 N, 0.5 mL). The reaction mixture was heated for 4 h at
50 ꢁC and then allowed to cool to room temperature and
then cooled at 0 ꢁC. The resulting brown precipitate was
collected by filtration, washed with cold water, acetone,
2. For a recent discussion, see: (a) Santamaria-Araujo, J. A.;
Fischer, B.; Otte, T.; Nimtz, M.; Mendel, R. R.; Wray, V.;