Communications
case of triaryl methanes that do not necessarily contain an
Keywords: amines · copper · homogeneous catalysis ·
nitrogen heterocycles · Schiff bases
.
indole moiety, the second electrophilic aromatic substitution
was investigated with isolated sulfonamide adducts. After
surveyingdifferent Lewis acids, we found that this reaction
occurs cleanly in the presence of Sc(OTf)3 (10 mol%) in
CH3CN at 608C. As shown in Table 4, a variety of unsym-
metrical triaryl methanes can be obtained in reasonable yields
[1] For reviews on Friedel–Crafts reaction, see: a) Organic Synthesis
(Ed.: M. B. Smith), McGraw-Hill, New York, 1994, p. 1313;
b) H. Heaney in Comprehensive Organic Synthesis, Vol. 2 (Eds.:
B. M. Trost, I. Fleming), Pergamon, Oxford, 1991, p. 733;
c) Friedel–Crafts Alkylation Chemistry: A Century of Discovery
(Eds.: R. M. Roberts, A. A. Khalaf), Dekker, New York, 1984.
For recent reviews on asymmetric Friedel–Crafts reactions, see:
d) M. Bandini, A. Melloni, A. Umani-Ronchi, Angew. Chem.
2004, 116, 560; Angew. Chem. Int. Ed. 2004, 43, 550; e) K. A.
Jørgensen, Synthesis 2003, 1117.
Table 4: Synthesis of unsymmetrical triaryl methanes.
[2] To the best of our knowledge, the gold(iii)-catalyzed addition of
1,3,5-trimethoxybenzene to the N-tosyl imines of benzaldehyde
and 4-chlorobenzaldehyde,[7b] and the asymmetric organocata-
lytic addition of 2-methoxyfuran to aryl aldimines (D. Uraguchi,
K. Sorimachi, M. Terada, J. Am. Chem. Soc. 2004, 126, 11804)
are the only examples of the participation of nonactivated imines
in the AFCR.
[3] a) Y. Yuan, X. Wang, X. Li, K. Ding, J. Org. Chem. 2004, 69, 146;
b) N. Gatergood, W. Zhuang, K. A. Jørgensen, J. Am. Chem.
Soc. 2000, 122, 12517; c) J. Hao, S. Taktak, K. Aikawa, Y. Yusa,
M. Hatano, K. Mikami, Synlett 2001, 1443; d) F. Bigi, G. Bocelli,
R. Maggi, G. Sartori, J. Org. Chem. 1999, 64, 5004.
[4] a) A. Ishii, V. A. Soloshonok, K. Mikami, J. Org. Chem. 2000, 65,
1597; b) A. Ishii, K. Mikami, J. Fluorine Chem. 1999, 97, 51; c) F.
Bigi, G. Casiraghi, G. Casnati, G. Sartori, G. Gasparri Fava, M.
Ferrari Belicchi, J. Org. Chem. 1985, 50, 5018.
[5] a) M. P. A. Lyle, N. D. Draper, P. D. Wilson, Org. Lett. 2005, 7,
901; b) A. Corma, H. García, A. Moussaif, M. J. Sabater, R.
Zniber, A. Redouane, Chem. Commun. 2002, 1058; c) G. Erker,
A. A. H. van der Zeijden, Angew. Chem. 1990, 102, 543; Angew.
Chem. Int. Ed. Engl. 1990, 29, 517.
Entry
1
Ar1
Ar2
Ar3
Product Yield [%][a]
41
42
43
44
45
46
65
65
57
57
57
44
2
3
4
5
6
[6] a) Y. Gong, K. Kato, H. Kimoto, Synlett 2000, 1058; b) Y. Gong,
Tetrahedron: Asymmetry 2001, 12, 2121.
[7] a) B. Jiang, Z.-G. Huang, Synthesis 2005, 2198; b) Y. Luo, C.-J.
Li, Chem. Commun. 2004, 1930; c) Y.-J. Chen, F. Lei, L. Liu, D.
Wang, Tetrahedron 2003, 59, 7609; d) F. Lei, Y.-J. Chen, Y. Siu, L.
Liu, D. Wang, Synlett 2003, 1160; e) S. Saaby, P. Bayón, P. S.
Aburel, K. A. Jørgensen, J. Org. Chem. 2002, 67, 4352; f) S.
Saaby, X. Fang, N. Gathergood, K. A. Jørgensen, Angew. Chem.
2000, 112, 4280; Angew. Chem. Int. Ed. 2000, 39, 4114; g) Y.-J.
Chen, C.-S. Ge, D. Wang, Synlett 2000, 1429; h) M. Johannsen,
Chem. Commun. 1999, 2233. For the AFCR of the benzoylhy-
drazone of glyoxalate esters, see: S. Shirakawa, R. Berger, J. L.
Leighton, J. Am. Chem. Soc. 2005, 127, 2858.
[8] a) C. Ramesh, J. Banerjee, R. Pal, B. Das, Adv. Synth. Catal.
2003, 345, 557; b) J. S. Jadav, B. V. S. Reddy, S. Sunitha, Adv.
Synth. Catal. 2003, 345, 349; c) J. S. Yadav, B. V. S. Reddy,
C. V. S. R. Murthy, G. M. Kumar, C. Madan, Synlett 2001, 783;
d) M. Alvaro, H. García, A. Sanjuµn, M. Esplµ, Appl. Catal. A
1998, 175, 105.
[9] a) B. Temelli, C. Unaleroglu, Tetrahedron Lett. 2005, 46, 7941;
b) B. Ke, Y. Qin, Q. He, Z. Huang, F. Wang, Tetrahedron Lett.
2005, 46, 1751; c) H. J. Lee, M. R. Seong, H. N. Song, J. N. Kim,
Bull. Korean Chem. Soc. 1999, 20, 267.
[10] R. Muthyala in Chemistry and Applications of Leuco Dyes (Eds.:
A. R. Katrizky, G. J. Sabongi), Plenum, New York, 1997.
[11] a) D. F. Duxbury, Chem. Rev. 1993, 93, 381; b) R. Aldagin
Photochroism: Molecules and Systems (Eds.: H. Dꢀrr, H. Bouas-
Laurent), Elsevier, London, 1990.
[a] Yield of pure product isolated after chromatography.
(44–65%) by appropriate choice of the Ar1, Ar2, and Ar3
moieties. This methodology provides access to unsymmetrical
triaryl methanes containingboth electron-rich and electron-
poor aromatic rings (e.g., products 42 and 46), a type of
compound that has seldom been studied since their synthesis
has not been well established.[28]
In summary, we have developed an efficient Cu(OTf)2-
catalyzed AFCR of N-sulfonyl imines with electron-rich
aromatic and heteroaromatic compounds based on the use of
the 2-pyridylsulfonyl moiety as the key controllingunit. This
highly reactive protocol displays a wide tolerance both with
respect to the imine substrate and the arene nucleophile. In
addition, this catalyst system also allows a controlled double
electrophilic aromatic substitution, which provides access to
unsymmetrical triaryl methanes with wide structural diversity.
[12] L. A. Baker, L. Sun, R. M. Crooks, Bull. Korean Chem. Soc.
2002, 23, 647.
[13] a) M. S. Baptista, G. L. Indig, J. Phys. Chem. B 1998, 102, 4678;
b) M. Terrier, T. Boubaker, L. Xiao, P. G. Farrell, J. Org. Chem.
1992, 57, 3924.
Received: September 16, 2005
Published online: December 13, 2005
632
ꢀ 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Angew. Chem. Int. Ed. 2006, 45, 629 –633