BULLETIN OF THE
Article Efficient Synthesis of Chiral Binaphthol Aldehyde with Phenyl Ether Linkage
KOREAN CHEMICAL SOCIETY
Table 1. Diastereomeric ratio (D-amino acid imine)/(L-amino acid
2. (a) V. A. Soloshonok, X. Tang, V. J. Hruby, L. Van Meervelt,
Org. Lett. 2001, 3, 341; (b) D. Z. Lin, J. Wang, X. Zhang,
S. B. Zhou, J. Lian, H. L. Jiang, H. Liu, Chem. Commun.
2013, 49, 2575.
imine) and enatiomeric excess (ee) values (in parentheses) at the
1
organic layer after ELLE with (S)-2, which were determined by H-
NMR studies.
3
. (a) K. Maruoka, T. Ooi, Chem. Rev. 2003, 103, 3013; (b) T. Ooi,
K. Maruoka, Angew. Chem. Int. Ed. 2007, 46, 4222.
Diastereomeric ratio (ee%)
Amino acids
TPPC
Aliquat 336
4. (a) S. M. Kim, J. W. Yang, Org. Biomol. Chem. 2013, 11, 4737;
b) H. Yan, J. S. Oh, J.-W. Lee, C. E. Song, Nat. Commun. 2012,
, 1212.
(
3
Phenylalanine
Serine
Valine
Leucine
Alanine
7.60 (76.8)
3.76 (58.0)
11.1 (83.4)
7.69 (77.0)
3.57 (56.2)
7.14 (75.4)
3.84 (58.8)
11.1 (83.4)
8.33 (78.6)
4.00 (60.0)
5
. (a) P. Merino, E. Marqués-López, T. Tejero, R. P. Herrera, Tet-
rahedron 2009, 65, 1219; (b) J. Gawronski, N. Wascinska,
J. Gajewy, Chem. Rev. 2008, 108, 5227;(c)S. J. Connon, Angew.
Chem. Int. Ed. 2008, 47, 1176.
6
. B. Schuur, B. J. V. Verkuijl, A. J. Minnaard, J. G. de Vries,
H. Heeres, B. L. Feringa, Org. Biomol. Chem. 2011, 9, 36.
. (a) S. C. Peacock, L. A. Domeier, F. C. A. Gaeta, R. C. Helgeson,
J. M. Timko, D. J. Cram, J. Am. Chem. Soc. 1978, 100, 8190; (b)
D. S. Lingenfelter, R. C. Helgeson, D. J. Cram, J. Org. Chem.
of 1. The selectivities of (S)-2 were not significantly affected
by change of Aliquat 336 to TPPC.
7
In these ELLE experiments, the imine formation was com-
pleted in several hours of stirring, and the imine in the organic
layer could be hydrolyzed by stirring with an acidic aqueous
solution. The hydrolysis reproduced the organic layer com-
pletely as in its initial state and transferred the hydrolyzed
amino acid to the aqueous layer. The organic layer could be
recycled again and again without isolation processes such as
evaporation and precipitation. This ensured the economical
1
981, 46, 393; (c) A. Galan, D. Andreu, A. Echavarren,
P. Prados, J. de Mendoza, J. Am. Chem. Soc. 1992, 114, 1511;
(d) K. Naemura, K. Nishioka, K. Ogasahara, Y. Nishikawa,
K. Hirose, Y. Tobe, Tetrahedron: Asymmetry 1998, 9, 563; (e)
M. Colera, A. M. Costero, P. Gavina, S. Gil, Tetrahedron: Asym-
metry 2005, 16, 2673.
. (a) P. Scrimin, P. Tecilla, U. Tonellato, Tetrahedron 1995, 51,
217; (b) H. Tsukube, S. Shinoda, J. Uenishi, T. Kanatani,
H. Itoh, M. Shiode, T. Iwachido, O. Yonemitsu, Inorg. Chem.
8
11
management of the ELLE, as reported in the previous paper.
1
998, 37, 1585; (c) T. B. Reeve, J.-P. Cros, C. Gennari,
U. Piarulli, J. G. de Vries, Angew. Chem. Int. Ed. 2006, 45,
449; (d) P. Dzygiel, T. B. Reeve, U. Piarulli, M. Krupicka,
I. Tvaroska, C. Gennari, Eur. J. Org. Chem. 2008, 2008,
253; (e) B. J. V. Verkuijl, A. J. Minnaard, J. G. de Vries,
Conclusion
2
In summary, a new type of chiral binol-aldehyde with phenyl
ether linkage, (S)-2, has been synthesized. During the synthe-
sis, the axially chiral binaphthol ring was racemized as a result
of high reaction temperatures. The enantiomerically pure
product was obtained through the resolution of diastereomeric
imine of 2 formed with an aminoalcohol by normal column
chromatography. The stereoselectivities of (S)-2 toward the
imine formation with amino acids in the ELLE condition were
1
B. L. Feringa, J. Org. Chem. 2009, 74, 6526; (f )
B. J. V. Verkuijl, B. Schuur, A. J. Minnaard, J. G. de Vries,
B. L. Feringa, Org. Biomol. Chem. 2010, 8, 3045; (g)
M. E. Amato, F. P. Ballistreri, S. D'Agata, A. Pappalardo,
G. A. Tomaselli, R. M. Toscano, G. Sfrazzetto, Eur. J. Org.
Chem. 2011, 28, 5674.
1
9. B. Schuur, J. Floure, A. J. Hallett, J. G. M. Winkelman, J. G. de
Vries, H. J. Heeres, Org. Process Res. Dev. 2008, 12, 950.
10. (a) H. Park, R. Nandhakumar, J. Hong, S. Ham, J. Chin,
K. M. Kim, Chem. Eur. J. 2008, 14, 9935; (b) H. Park,
K. M. Kim, A. Lee, S. Ham, W. Nam, J. Chin, J. Am. Chem.
Soc. 2007, 129, 1518; (c) H. Yoon, H. Jung, Y. Ahn, N. Raju,
J. Kim, K. Kim, Bull. Korean Chem. Soc. 2012, 33, 1715.
1. (a) H. Huang, R. Nandhakumar, M. Choi, Z. Su, K. M. Kim,
J. Am. Chem. Soc. 2013, 135, 2653; (b) H. Huang, Q. Chen,
M. Choi, R. Nandhakumar, Z. Su, S. Ham, K. Kim, Chem.
Eur. J. 2014, 20, 2895.
measured by H NMR spectroscopic studies.
Acknowledgments. This work was supported by Basic Sci-
ence Research Program through the National Research Foun-
dation of Korea (NRF) funded by the Ministry of Education,
Science and Technology (NRF-2013R1A1A2008959). M.-J.
Jun is grateful to the ReSEAT Program, Korea Institute of Sci-
ence & Technology Information, for support.
1
References
1
2. L. Tang, G. Wei, R. Nandhakumar, Z. Guo, Bull. Korean Chem.
Soc. 2011, 32, 3367.
1
. (a) N. J. Turner, Curr. Opin. Chem. Biol. 2010, 14, 115; (b)
Y. K. Choi, Y. Kim, K. Han, J. Park, M.-J. Kim, J. Org. Chem.
13. Spartan ’10 for windows, Wavefunction Inc., version 1.0.1; The
calculation was performed at Molecular Mechanics level.
14. V. K. Krishnakumar, M. M. Sharma, Ind. Eng. Chem. Proc. Des.
Dev. 1985, 24, 1293.
2
009, 74, 9543; (c) K. Yasukawa, R. Hasemi, Y. Asano, Adv.
Synth. Catal. 2011, 353, 2328; (d) A. E. Felten, G. Zhu,
Z. D. Aron, Org. Lett. 2010, 12, 1916.
Bull. Korean Chem. Soc. 2015, Vol. 36, 1834–1837
© 2015 Korean Chemical Society, Seoul & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.bkcs.wiley-vch.de 1837