Study of Nα‐Fmoc‐protected dipeptide isomers by ESI‐MSn
[15] K. A. Schug, W. Linder, K. Lemr. Isomeric discrimination of
arginine‐containing dipeptides using electrospray ioniza-
tion ion trap mass spectrometry and the kinetic method.
J. Am. Soc. Mass Spectrom. 2004, 15, 840.
[16] F. Pingitore, C. Wesdemiotis. Characterization of dipeptide
isomers by tandem mass spectrometry of their mono‐
versus dilithiated complexes. Anal. Chem. 2005, 77, 1796.
[17] W. Andy Tao, L. Wu, R. G. Cooks. Differentiation and
quantitation of isomeric dipeptides by low energy dissocia-
tion of copper(II)‐bound complexes. J. Am. Soc. Mass
Spectrom. 2001, 12, 490.
[18] M. W. Forbes, R. A. Jockusch, A. B. Young, A. G. Harrison.
Fragmentation of protonated dipeptides containing argi-
nine. Effect of activation method. J. Am. Soc. Mass Spectrom.
2007, 18, 1959.
[19] N. L. Squire, S. Beranova, C. Wesdemiotis. Tandem mass
spectrometry of peptides. III. Differentiation between
leucine and isoleucine based on neutral losses. J. Mass
Spectrom. 1995, 30, 1429.
[20] C. Fonseca, M. R. M. Domingues, C. Simoes, F. Amado,
P. Domingues. Reactivity of Tyr–Leu and Leu–Tyr dipeptides:
identification of oxidation products by liquid chromatography–
tandem mass spectrometry. J. Mass Spectrom. 2009,
44, 681.
[21] S. L. Cook, O. L. Collin, G. P. Jackson. Metastable atom‐
activated dissociation mass spectrometry: leucine/isoleu-
cine differentiation and ring cleavage of proline residues. J.
Mass Spectrom. 2009, 44, 1211.
[22] A. Goel, P. T. M. Kenny. Formation of b1‐1 and the
corresponding a1‐1 product ions in the mass spectra of
N‐{para‐(ferrocenyl)benzoyl} dipeptide esters. Rapid Commun.
Mass Spectrom. 2008, 22, 2398.
[23] K. Ambihapathy, T. Jalcin, H. W. Leung, A. G. Harrison.
Pathways to immonium ions in the fragmentation of
protonated peptides. J. Mass Spectrom. 1997, 32, 209.
[24] R. D. Hiserodt, S. M. Brown, D. F. H. Swijter, N. Hawkins,
C. J. Mussinan. A study of b1 + H2O and b1‐ions in the
product ion spectra of dipeptides containing N‐terminal
basic amino acid residues. J. Am. Soc. Mass Spectrom.
2007, 18, 1414.
[25] J. M. Farrugia, R. A. J. O’Hair. Involvement of salt bridges in
a novel gas phase rearrangement of protonated arginine‐
containing dipeptides which precedes fragmentation. Int.
J. Mass Spectrom. 2003, 222, 229
[26] W. Kulik, W. Heerma. The determination of the amino
acid sequence in the fast atom bombardment mass spectra
of dipeptides. Biomed. Environ. Mass Spectrom. 1988, 17,
173.
[27] W. Kulik, W. Heerma. Fast atom bombardment tandem
mass spectrometry for amino acid sequence determination
in tripeptides. Biol. Mass Spectrom. 1989, 18, 910.
[28] D. Von Setten, W. Kulik, W. Heerma. Isomeric tripeptides: a
study on structure‐spectrum relationship. Biomed. Environ.
Mass Spectrom. 1990, 19, 475.
[29] K. Isa, T. Omote, M. Ayama. New rules concerning the
formation of protonated amino acids from protonated
dipeptides using the proton affinity order determined from
collisionally activated decomposition spectra. Org. Mass
Spectrom. 1990, 25, 620.
[32] Z. T. Zhu, Y. M. Li, Y. T. Guo, M. Sun, Y. F. Zhao. Anew
fragmentation rearrangement of the N‐terminal protected
amino acids using ESI‐MS/MS. Indian J. Biochem. Biophys.
2006, 43, 372.
[33] C. Enjalbal, J. Martinez, G. Subra, R. Combarieu, J. L.
Aubagnac. Time‐of‐flight secondary ion mass spectrometry
of Fmoc‐amino acids linked to solid supports through
ionic interactions. Rapid Commun. Mass Spectrom. 1998,
12, 1715.
[34] C. Drouot, C. Enjalbal, P. Fulcrand, J. Martinez, J. L.
Aubagnac. Tof‐SIMS analysis of polymer bound Fmoc‐
protected peptides. Tetrahedron Lett. 1997, 38, 2455.
[35] L. Di Donna, A. Liguori, A. Napoli, G. Sindona.
Energetics of an intracluster β‐elimination process driven
by acetate anions. The case of a Fmoc‐protected peptide
investigated by high‐resolution electrospray ionization
tandem mass spectrometry. J. Mass Spectrom. 2003, 38,
778.
[36] J. L. Aubagnac, C. Enjalbal, G. Subra, A. M. Bray, R.
Combarieu, J. Martinez. Application of time‐of‐flight
secondary ion mass spectrometry to in situ monitoring of
solid‐phase peptide synthesis on the multipin™ system. J.
Mass Spectrom. 1998, 33, 1094.
[37] J. L. Aubagnac, C. Enjalbal, C. Drouot, R. Combarieu, J.
Martinez. Imaging time‐of‐flight secondary ion mass
spectrometry of solid‐phase peptide syntheses. J. Mass
Spectrom. 1999, 34, 749.
[38] V. V. Sureshbabu, H. P. Hemantha. A facile synthesis of
Nα‐Fmoc protected amino/peptidyl weinreb amides em-
ploying acid chlorides as key intermediates. ARKIVOC 2008
(ii) 243.
[39] (a) H. N. Gopi, V. V. Sureshbabu. Synthesis of peptides
employing Fmoc‐amino acid chlorides and commercial zinc
dust. Tetrahedron Lett.. 1998, 39, 9769; (b) K. Ananda, V. V.
Sureshbau. Deprotonation of hydrochloride salts of amino
acid esters and peptide esters using commercial zinc dust.
J. Pept. Res. 2001, 57, 223.
[40] (a) L. A. Carpino, B. J. Cohen, K. E. Stephens Jr, S. Y.
Sadat‐Aalaee, J. H. Tien, D. C. Langridge. (Fluoren‐9‐
ylmethoxy)carbonyl (Fmoc) amino acid chlorides. Synth-
esis, characterization, and application to the rapid
synthesis of short peptide segments. J. Org. Chem. 1986,
51, 3732; (b) Kantharaju, B. S. Patil, V. V. Sureshbau.
Synthesis of Fmoc‐amino acid chlorides assisted by
ultrasonication, a rapid approach. Lett. Pept. Sci. 2002,
9, 227.
[41] R. Pascal, R. Sola. Preservation of the protective group
under alkaline conditions by using CaCl2. Applica-
tions in peptide synthesis. Tetrahedron Lett. 1998, 39,
5031.
[42] P. Roepstorff, J. Fohlman. Proposal for a common nomen-
clature for sequence ions in mass spectra of peptides.
Biomed. Mass Spectrom. 1984, 11, 601.
[43] K. Biemann. Contribution of mass spectrometry to peptide
and protein structure. Biomed. Environ. Mass Spectrom.
1988, 16, 99.
[44] K. Biemann, S. A. Martin. Mass spectrometric determina-
tion of the amino acid sequence of peptides and proteins.
Mass Spectrom. Rev. 1987, 6, 1.
[30] M.Ramesh,B.Raju,R.Srinivas,V.V.Sureshbabu,N. Narendra,
B. Vasantha. Characterization of Nα‐Fmoc‐protected ureido-
peptides by electrospray ionization tandem mass spectro-
metry (ESI‐MS/MS): differentiation of positional isomers.
J. Mass Spectrom. 2010, 45, 1461.
[31] D. Jintang, L. Yanmei, Z. Zhentai, C. Yi, Z. Yufen.
Rearrangement mechanism of the sodium adducts of
Fmoc protected amino acids. Chin. Sci. Bull. 2003, 48,
2317.
[45] B. Raju, M. Ramesh, R. Srinivas, S. Chandrasekhar,
N. Kiranmai, V. U. M. Sarma. Differentiation of positional
isomers of hybrid peptides containing repeats of β‐
nucleoside derived amino acid (β‐Nda‐) and L‐Amino
acids by positive and negative ion electrospray ionization
tandem mass spectrometry (ESI‐MSn). J. Am. Soc. Mass
Spectrom. 2011, 22, 703.
[46] A. Greenberg, H. J. Hsing, J. L. Liebman. Aziridinone
and 2‐azetidinone and their protonated structures. An
Rapid Commun. Mass Spectrom. 2011, 25, 1949–1958 Copyright © 2011 John Wiley & Sons, Ltd.
wileyonlinelibrary.com/journal/rcm