advanced properties. This work is currently in progress in
our laboratories.
The authors are grateful to Vincent Colliere for SEM and
HRTEM analysis. The Hassan II Academy of Science and
Technology is warmly acknowledged for the financial support.
Notes and references
1 C. Sanchez, G. J. A. A. Soler-Illia, F. Ribot, T. Lalot, C. R. Mayer
and V. Cabuil, Chem. Mater., 2001, 13, 3061–3083.
2 G. M. Whitesides and B. Grzybowski, Science, 2002, 295,
2418–2421; I. W. Hamley, Angew. Chem., Int. Ed., 2003, 42,
1692–1712; S. Mann, Nat. Mater., 2009, 8, 781–792.
3 F. Hoffmann, M. Cornelius, J. Morell and M. Froba, Angew.
Chem., Int. Ed., 2006, 45, 3216–3251; Y. Wan and D. Y. Zhao,
Chem. Rev., 2007, 107, 2821–2860.
Fig. 3 Schematic illustration of the material design: (i) coordination
between the titanium alkoxides and phosphonate ligands, leading to
the formation of reactive building blocks; (ii) cross-linking of the
titanium alkoxides and further densification of the titania network;
(iii) fusing of the elemental grains to form a continuous network.
4 C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and
J. S. Beck, Nature, 1992, 359, 710–712; D. Zhao, J. Feng, Q. Huo,
N. Melosh, G. H. Fredrickson, B. F. Chmelka and G. D. Stucky,
Science, 1998, 279, 548–552.
5 N. Baccile, J. Reboul, B. Blanc, B. Coq, P. Lacroix-Desmazes,
M. In and C. Gerardin, Angew. Chem., Int. Ed., 2008, 47,
8433–8437; A. El Kadib, K. Molvinger, T. Cacciaguerra,
M. Bousmina and D. Brunel, Microporous Mesoporous Mater.,
2011, 142, 301–307.
6 Review: J. P. Majoral and A. M. Caminade, Chem. Rev., 1999, 99,
845–880; A. M. Caminade and J. P. Majoral, Acc. Chem. Res.,
2004, 37, 341–348.
7 J. Leclaire, Y. Coppel, A. M. Caminade and J. P. Majoral, J. Am.
Chem. Soc., 2004, 126, 2304–2305; J. Jimenez, A. Laguna,
A. M. Molter, J. L. Serrano, J. Barbera and L. Oriol, Chem.–Eur.
J., 2011, 17, 1029–1039; P. Carbone and L. Lue, Macromolecules,
2010, 43, 9191–9197.
8 X. Tang, N. Yao and M. E. Thompson, Supramol. Sci., 1997, 4,
35–42; G. Alberti, U. Costantino, C. Dionigi, S. Murciamascaros
and R. Vivani, Supramol. Chem., 1995, 6, 29–40; A. Clearfield,
Prog. Inorg. Chem., 1998, 47, 371–510.
9 W. Gao, L. Dickinson, C. Grozinger, F. G. Morin and L. Reven,
Langmuir, 1996, 12, 6429–6435; P. H. Mutin, G. Guerrero and
A. Vioux, J. Mater. Chem., 2005, 15, 3761–3768; E. M. Ferrero,
G. Franc, S. Mazeres, C. O. Turrin, C. Boissiere, A. M. Caminade,
J. P. Majoral and C. Sanchez, Chem.–Eur. J., 2008, 14, 7658–7669.
10 X. J. Zhang, T. Y. Ma and Z. Y. Yuan, J. Mater. Chem., 2008, 18,
2003–2010; T.-Y. Ma, X.-Z. Lin and Z. Y. Yuan, Chem.–Eur. J.,
2010, 16, 8487–8494.
11 M. N. Tchoul, S. P. Fillery, H. Koerner, L. F. Drummy,
F. T. Oyerokun, P. A. Mirau, M. F. Durstock and R. A. Vaia,
Chem. Mater., 2010, 22, 1749–1759.
12 G. J. A. A. Soler-Illia, L. Rozes, M. K. Boggiano, C. Sanchez,
C. O. Turrin, A. M. Caminade and J. P. Majoral, Angew. Chem.,
Int. Ed., 2000, 39, 4249–4254; G. Franc, E. Badetti, V. Colliere,
J. P. Majoral, R. M. Sebastian and A. M. Caminade, Nanoscale,
2009, 1, 233–237.
their solvated state. However, upon drying, the dendritic
branches are compliant enough to be drawn together by
capillary forces. By sharp contrast, the results presented herein
suggest that cross-linking of these objects provides a robust
hydrogel network that can better withstand the tension of a
receding solvent meniscus during drying.14 Thus, in solid state,
the materials exhibit significant accessible porosity (Fig. 3).
From a mechanistic viewpoint, it seems that the initial step
for material growth involves chelation of the metal alkoxide by
the phosphonate ligands, which leads to strong connectivity
between the organic and inorganic domains.15 This constitutes
the primary reactive building blocks for material nucleation.
The complexation of titanium alkoxide by phosphonate
ligands decreases the reactivity of the metal and allows for
more controlled condensation.16 The remaining alkoxy ligands
bridged to titanium centers interact by hydrolysis–condensation,
allowing for the continued formation and densification of the
elemental grains. The process of condensation consumes the
excess titanium alkoxide monomers by anchoring them to the
growing structure and mitigates random aggregate formation.
As the process goes on, the grains react with each other leading
to the spherical network observed by SEM.
The thermal stability of these materials has been examined
by thermogravimetric analysis (TGA) (S10 in ESIw). Thanks
to the high stability of phosphorus dendrimers,17 only 20% of
the skeleton degrades with heating. The preservation of the
crystalline anatase (even after thermal treatment at 800 1C
with a slight increase in the crystal size to B9 nm) demon-
strates the remarkable stability of the dendritic framework
(S11 in ESIw). Surprisingly, no transformation to the brookite
or rutile phase, commonly observed at this temperature range,
has been detected.18 These important outcomes are mainly
due to the steric hindrance of the dendritic skeleton, which
hampers the thermodynamically favored phase transformation
of the crystalline structure.
13 D. Astruc, E. Boisselier and C. Ornelas, Chem. Rev., 2010, 110,
1857–1959; R. M. Crooks, M. Zhao, L. Sun, V. Chechik and
L. K. Yeung, Acc. Chem. Res., 2001, 34, 181–190.
14 A. Bouchara, L. Rozes, G. J. A. A. Soler-Illia, C. Sanchez,
C. O. Turrin, A. M. Caminade and J. P. Majoral, J. Sol-Gel Sci.
Technol., 2003, 26, 629–633.
15 J. R. Errington, J. Ridland, K. J. Willett, W. Clegg, R. A. Coxall
and S. L. Heath, J. Organomet. Chem., 1998, 550, 473–476;
M. Mehring, G. Guerrero, F. Dahan, P. H. Mutin and
A. Vioux, Inorg. Chem., 2000, 39, 3325–3332.
In summary, an efficient strategy to draw nonporous packed
dendritic structures into the realm of stable porous hybrid
materials has been validated by cross-linking their periphery
with nanocrystalline titanium dioxide clusters. This strategy
further provides interesting hierarchical materials in which
photoactive crystalline anatase19 is grown in dendritic sub-
structures. This hierarchical porosity, the photoactivity of the
titanium anatase and the intrinsic properties of phosphorus
dendrimers are likely to provide synergetic materials with
16 C. Sanchez, J. Livage, M. Henry and F. Babonneau, J. Non-Cryst.
Solids, 1988, 100, 65–76; A. Leaustic, F. Babonneau and J. Livage,
´
Chem. Mater., 1989, 1, 240–252; A. El Kadib, K. Molvinger,
C. Guimon, F. Quignard and D. Brunel, Chem. Mater., 2008, 20,
2198–2204.
17 C. O. Turrin, V. Maraval, J. Leclaire, E. Dantras, C. Lacabanne,
A. M. Caminade and J. P. Majoral, Tetrahedron, 2003, 59,
3965–3973.
18 X. Chen and S. S. Mao, Chem. Rev., 2007, 107, 2891–2959.
19 A. Primo, A. Corma and H. Garcia, Phys. Chem. Chem. Phys.,
2011, 13, 886–910.
c
8628 Chem. Commun., 2011, 47, 8626–8628
This journal is The Royal Society of Chemistry 2011