Facile Synthesis of Optically-Active γ-Valerolactone from Levulinic Acid and Its Esters Using…
13. Gorissen HJ, Van Hoeck J-P, Mockel AM, Journée GH, Delatour
and reuse, and particularly, resource savings (not using pre-
cious metals for the present catalyst). As for the isolation
of GVL from the product solution, almost the quantitative
yield of GVL was attained after the removal of the catalyst
using magnet and a simple distillation, in the case of the
conversion and the chemoselectivity of GVL was 100%.
The study of the development of the catalyst for ring clo-
sure of alkyl 4-hydroxypentanoate is in progress. Hence, the
TA-NaBr-modified nickel catalyst would be promising for
the industrial production of the optically-active GVL from
bio-mass waste.
C, Libert VR (1992) Chirality 4:286
14. Baldwin JE, Adlington RM, Ramcharitar SH (1992) Synlett
1992:875
15. Stangeland EL, Sammakia T (2004) J Org Chem 69:2381
16. Tukacs JM, Fridrich B, Dibo G, Szekely E, Mika LT (2015) Green
Chem 17:5189
17. Datrika R, Kallam SR, Gajare V, Khobare S, Rama VS, Kommi
M, Hindupur RM, Vidavulur S, Tadikonda PV (2017) Chemis-
trySelect 2:5828
18. Sheldon RA (2014) Green Chem 16:950
19. Zhang Z (2016) ChemSusChem 9:156
20. Deng L, Li J, Lai D-M, Fu Y, Guo Q-X (2009) Angew Chem
121:6651
21. Deng J, Wang Y, Pan T, Xu Q, Guo Q-X, Fu Y (2013) ChemSu-
sChem 6:1163
22. Tukacs JM, Novak M, Dibo G, Mika LT (2014) Catal Sci Technol
4:2908
5 Conclusion
23. Fábos V, Mika LT, Horváth IT (2014) Organometallics 33:181
24. Wright WRH, Palkovits R (2012) ChemSusChem 5:1657
25. Osatiashtiani A, Lee AF, Wilson K (2017) J Chem Technol Bio-
technol 92:1125
The optically-active GVL was synthesized by the enantio-
selective hydrogenations of levulinic acid and its esters,
which can be obtained by the degradation of biomass. The
optically-active GVL with 60% ee was produced from both
levulinic acid and its esters in almost quantitative conversion
and chemoselectivity using the TA-NaBr-modified nickel
catalyst. The enantio-selective hydrogenation of levulinic
acid required a pre-modified catalyst. This would be attrib-
uted to the acid characteristics of the substrate. Meanwhile,
the enantio-selective hydrogenations of alkyl levulinates
proceeded by the in situ modified catalysts, which is more
favorable for the industrial applications. The synthesis of
optically-active GVL from levulinic acid and its esters using
enantio-selective heterogeneous catalysts would be promis-
ing for its large-scale industrial production.
26. Ohkuma T, Kitamura M, Noyori R (1990) Tetrahedron Lett
31:5509
27. Saito T, Yokozawa T, Ishizaki T, Moroi T, Sayo N, Miura T,
Kumobayashi H (2001) Adv Synth Catal 343:264
28. Juszkiewicz G (2002) Pol J Chem 76(12):1707
29. Starodubtseva EV, Turova OV, Vinogradov MG, Gorshkova LS,
Ferapontov VA, Struchkova MI (2008) Tetrahedron 64:11713
30. Izumi Y (1983) Adv Catal 32:215
31. Tai A, Sugimura T (2000) In: Vos DED, Vankelecom IFJ, Jacobs
PA (eds) Chiral catalyst immobilization and recycling. Wiley-
VCH, p 173
32. Sugimura T (1999) Catal Surv Jpn 3:37
33. Ding C, Wei W, Sun H, Ding J, Ren J, Qu X (2014) Carbon 79:615
34. Osawa T, Harada T (1984) Bull Chem Soc Jpn 57:1518
35. López-Martínez A, Keane MA (2000) J Mol Catal A 153:257
36. Rives A, Leclercq E, Hubau R (1996) In: Malz RE (ed) Catalysis
of organic reactions. Dekker Inc, New York, p. 241
37. Osawa T, Hayashi Y, Ozawa A, Harada T, Takayasu O (2001) J
Mol Catal A 169:289
References
38. Harada T, Yamamoto M, Onaka S, Imaida M, Ozaki H, Tai A,
Izumi Y (1981) Bull Chem Soc Jpn 54:2323
1. Horvath IT, Mehdi H, Fabos V, Boda L, Mika LT (2008) Green
Chem 10:238
39. Osawa T, Ozawa A, Harada T, Takayasu O (2000) J Mol Catal A
154:271
2. Mehdi H, Fabos V, Tuba R, Bodor A, Mika LT, Horvath IT (2008)
Top Catal 48:49
40. Margitfalvi JL, Marti P, Baiker A, Botz L, Sticher O (1990) Catal
Lett 6:281
3. Bond JQ, Alonso DM, Wang D, West RM, Dumesic JA (2010)
Science 327:1110
41. Baiker A (1997) J Mol Catal A 115:473
42. Harada T, Izumi Y (1978) Chem Lett 7:1195
43. Bostelaar LJ, Sachtler WMH (1984) J Mol Catal 27:387
44. Osawa T, Mieno E, Harada T, Takayasu O (2003) J Mol Catal A
200:315
4. Raoufmoghaddam S, Rood MTM, Buijze FKW, Drent E, Bouw-
man E (2014) ChemSusChem 7:1984
5. Gagliardi M, Di Michele F, Mazzolai B, Bifone A (2015) J Polym
Res 22:1
45. Murakami S, Harada T, Tai A (1980) Bull Chem Soc Jpn 53:1356
46. Keane MA (1997) Langmuir 13:41
6. Chalid M, Heeres HJ, Broekhuis AA (2015) Polym-Plast Technol
Eng 54:234
47. Kukula P, Cerveny L (2002) J Mol Catal A 185:195
48. Osawa T, Tanabe Y, Fujiwara M (2017) Catal Lett 147:686
49. Kukula P, Cerveny L (2001) Appl Catal A 210:237
50. Chen H, Li R, Wang H, Liu J, Wang F, Ma J (2007) J Mol Catal
A 269:125
7. He J, Wang Z, Zhao W, Yang T, Liu Y, Yang S (2017) Curr Catal
6:31
8. Pongracz P, Kollar L, Mika LT (2016) Green Chem 18:842
9. Marosvölgyi-Haskó D, Lengyel B, Tukacs JM, Kollár L, Mika LT
(2016) ChemPlusChem 81:1224
51. Harada T, Tai A, Yamamoto M, Ozaki H, Izumi Y (1981) Stud
Surf Sci Catal 7:364
10. Rasina D, Kahler-Quesada A, Ziarelli S, Warratz S, Cao H, San-
toro S, Ackermann L, Vaccaro L (2016) Green Chem 18:5025
11. Tian X, Yang F, Rasina D, Bauer M, Warratz S, Ferlin F, Vaccaro
L, Ackermann L (2016) Chem Commun 52:9777
12. Pongrácz P, Bartal B, Kollár L, Mika LT (2017) J Organomet
Chem 847:140
52. Osawa T, Ando M, Sakai S, Harada T, Takayasu O (2005) Catal
Lett 105:41
53. Blaser HU, Jalett HP, Wiehl J (1991) J Mol Catal 68:215
54. Nakagawa S, Sugimura T, Tai A (1997) Chem Lett 26:859
1 3