J . Org. Chem. 2000, 65, 701-706
701
1
P [(S,S,S)-P h HMeCNCH2CH2]3N: A New Ch ir a l 31P a n d H NMR
Sp ectr oscop ic Rea gen t for th e Dir ect Deter m in a tion of ee Va lu es
of Ch ir a l Azid es
Xiaodong Liu, Palanichamy Ilankumaran, Ilia A. Guzei, and J ohn G. Verkade*
Department of Chemistry, Iowa State University, Ames, Iowa 50011
Received August 17, 1999
A facile and economical procedure for the synthesis of the C3 chiral R-phenylethylamino trisami-
noamine [(S,S,S)-PhHMeCNHCH2CH2]3N in good yield is reported. The corresponding bicyclic
proazaphosphatrane P[(S,S,S)-PhHMeCNCH2CH2]3N, its bicyclic phosphoryl derivative, and its
tricyclic P-protonated azaphosphatrane were also synthesized and characterized. It is found that
the proazaphosphatrane is an efficient derivatizing agent for the direct determination of enantio-
1
meric ratios of chiral azides by means of 31P and H NMR spectroscopy.
In tr od u ction
and for the synthesis of a chiral fluorescence agent.13 As
a result of such applications, 1b has become commercially
available.14 Recently, we have discovered that 1b and 1c
are also efficient nonionic base catalysts for transesteri-
fication,15 â-nitroalkanol synthesis,16 Michael additions,17
â-hydroxy nitrile synthesis,18 and R,â-unsaturated nitrile
synthesis.19
In recent years we have been exploring the chemistry
of proazaphosphatranes such as 1a -f,1-6 some of which
are proving to be exceedingly potent catalysts, promoters
and strong nonionic bases that facilitate a variety of
useful organic transformations. For example, 1b is an
Chiral azides are important starting materials for the
synthesis of amines that are used as ligands, chiral
auxiliaries, pharmaceutical intermediates and building
blocks for the asymmetric synthesis of natural products.20
Although amines can be made in several ways, the azide
reduction method is often employed because it is facile
and well documented in the literature. Hence numerous
methods have been developed to synthesize azides in
enantiomeric forms.21 While a variety of approaches can
be taken to establish the enantiomeric purity of chiral
compounds, 31P NMR spectroscopic analysis is very
popular because of the attractive features of this nucleus.22
Several derivatizing agents have been developed for such
analyses of chiral alcohols, amines, and thiols.21e How-
ever, no derivatizing agent has been reported for the
efficient catalyst for the trimerization of aryl and alkyl
isocyanates that function as additives in the manufacture
of nylon-6,7 for the protective silylation of a wide variety
of sterically hindered and deactivated alcohols,8 and for
the acylation of such substrates.9 Proazaphosphatrane
1b is much stronger as a base than DBU,10 a commonly
used nonionic base in organic synthesis. Thus it is a
superior base for the synthesis of porphyrins,11 for the
dehydrohalogenation of secondary and tertiary halides,12
(13) Tang, J .-S.; Verkade, J . G. J . Org. Chem. 1996, 61, 8750.
(14) Strem Chemical Company. 7 Mulliken Way, Dexter Industrial
Park, Newburyport, MA 01950‚4098.
(15) Ilankumaran, P.; Verkade, J . G. J . Org. Chem. 1999, 64, 3086.
(16) Kisanga, P.; Verkade, J . G. J . Org. Chem. 1999, 64, 4298.
(17) Kisanga, P.; Ilankumaran, P.; Verkade, J . G. J . Org. Chem.,
submitted for publication.
(18) Kisanga, P.; McLeod, D.; D’Sa, B.; Verkade, J . G. J . Org. Chem.
1999, 64, 3090.
(19) D’Sa, B. A.; Kisanga, P.; Verkade, J . G. J . Org. Chem. 1998,
63, 3961.
(20) (a) J adhav, P. K.; Man, H, W. Tetrahedron Lett. 1996, 37, 1153.
(b) Lundquist, J . T.; Dix, T. A. Tetrahedron Lett. 1998, 39, 775. (c)
Corey, E. J .; Link, O. J . Am. Chem. Soc. 1992, 114, 1906. (d)
Skarzewski, J .; Gupta, A. Tetrahedron: Asymmetry 1997, 8, 1861. (e)
Brunner, H.; Bugler, H.; Nuber, B. Tetrahedron: Asymmetry 1995, 6,
1699. (f) Pini, D.; Iuliano, A.; Rosini, C.; Salvadori, P. Synthesis 1990,
1023.
* Ph: (515) 294-5023. Fax: (515) 294-0105. Email: jverkade@
iastate.edu.
(1) Verkade, J . G. Acc. Chem. Res. 1993, 26, 483.
(2) Verkade, J . G. Coord. Chem. Rev. 1994, 137, 233.
(3) Laramay, M. A. H.; Verkade, J . G. Z. Anorg. Allg. Chem. 1991,
605, 163.
(4) Schmidt, H.; Lensink, C.; Xi, S. K.; Verkade, J . G. Z. Anorg. Allg.
Chem. 1989, 578, 75.
(5) Wroblewski, A. E.; Pinkas, J .; Verkade, J . G. Main Group Chem.
1995, 1, 69.
(6) Liu, X.; Bai, Y.; Verkade, J . G. J . Organomet. Chem. 1999, 582,
16.
(7) Tang, J .-S.; Mohan, T.; Verkade, J . G. J . Org. Chem. 1994, 59,
4931.
(8) D’Sa, B.; Verkade, J . G. J . Am. Chem. Soc. 1996, 118, 832.
(9) D’Sa, Bosco A.; Verkade, J . G. J . Org. Chem. 1996, 61, 2963.
(10) Tang, J .-S.; Dopke, J .; Verkade, J . G. J . Am. Chem. Soc. 1993,
115, 5015.
(11) Tang, J .-S.; Verkade, J . G. J . Org. Chem. 1994, 59, 7793.
(12) Mohan, T.; Arumugam, S.; Wang, T.; J acobson, R. A.; Verkade,
J . G. Heteroat. Chem. 1996, 7, 455.
(21) (a) Mitrochkine, A. A.; Blain, I.; Bit, C.; Canlet, C.; Pierre, S.;
Courtieu, L.; Reglier, M. J . Org. Chem. 1997, 62, 6204. (b) Wu, M. H.;
J acobsen, E. N. Tetrahedron Lett. 1997, 38, 1699. (c) Trost, B. M.;
Pulley, S. R. Tetrahedron Lett. 1995, 36, 8737. (d) Besse, P.; Vescham-
bre, H.; Chenevert, R.; Dickman, M. Tetrahedron: Asymmetry 1994,
5, 1727. (e) Mischitz, M.; Faber, K. Tetrahedron Lett. 1994, 35, 81. (f)
Yamashita, H. Bull. Chem. Soc. J pn. 1988, 61, 1213. (g) Sato, T.;
Mizutani, T.; Okumura, Y.; Fujisawa, T. Tetrahedron Lett. 1989, 30,
3701. (h) Fadnavis, N. M.; Vadivel, S. K.; Sharfuddin, M.; Bhalerao,
U. T. Tetrahedron: Asymmetry 1997, 8, 4003. (i) Besse, P.; Veschambre,
H.; Dickman, M.; Chenevert, R. J . Org. Chem. 1994, 59, 8288.
10.1021/jo991304a CCC: $19.00 © 2000 American Chemical Society
Published on Web 01/06/2000