Table 2 Synthesis of 6 using thiophenoxide as thiophile
For E-6b: yellow oil; nmax(CCl4)/cm21 3620 (OH); 1H NMR (200 MHz,
CDCl3): d 0.88 (3 H, t, J 7.5 Hz), 1.20–1.75 (5 H, m), 2.20 (3 H, s), 4.10 (1
H, br q, J 6.5 Hz), 5.33 and 5.40 (1 H, dd, J 14.5 and 7.3 Hz), 6.25 (1 H, d,
J 14.5 Hz); 13C NMR (50.3 MHz, CDCl3): d 13.78, 14.31, 18.53, 39.38,
72.64, 126.25, 128.00; m/z 146 (M+), 129 (M+2H2O).
Substituents
Yield of 6
(%)a
R
RA
E:Z ratiob
For E-6c: yellow oil; nmax(CCl4)/cm21 3610 (OH); 1H NMR (200 MHz,
CDCl3): d 2.00 (1 H, br s), 2.26 (3 H, s), 2.80 and 2.90 (2 H, ABq, J 13.6,
7.8 and 5.8 Hz), 4.40 (1 H, br q, J 4.4 Hz), 5.45 and 5.52 (1 H, dd, J 15.6
and 7.0 Hz), 6.33 (1 H, d, J 15.6 Hz), 7.40–7.60 (5 H, m); 13C NMR (50.3
MHz, CDCl3): d 14.30, 44.02, 73.35, 126.32, 126.64, 128.25, 129.39,
137.40; m/z 194 (M+), 176 (M+2H2O).
a
b
c
d
e
Et
Pr
Bn
H
H
H
H
75
75
89
90
90
95:5
92:8
95:5
97:3
—
PhO(CH2)2
–(CH2)3–
For E-6d: yellow oil; nmax(CCl4)/cm21 3620 (OH); 1H NMR (200 MHz,
CDCl3): d 1.99 (2 H, q, J 6.0 Hz), 2.15 (1 H, br s), 2.22 (3 H, s), 3.95–4.20
(2 H, m), 4.35–4.50 (1 H, m), 5.42 and 5.47 (1 H, dd, J 15.7 and 6.7 Hz),
6.35 (1 H, d, J 15.7 Hz), 6.85–6.95 (3 H, m), 7.20–7.35 (2 H, m); 13C NMR
(50.3 MHz, CDCl3): d 13.98, 36.33, 64.24, 69.62, 114.12, 120.37, 126.37,
126.82, 129.05, 158.31; m/z 224 (M+).
a Yields of pure isolated products. b Determined by NMR spectroscopy.
1
For 6e: yellow oil; nmax(CCl4)/cm21 3615 (OH); H NMR (200 MHz,
It is worth noting that the yield is also high for the formation
of 6e, where the initial isomerization is accompanied by a
considerable increase of torsional strain.
CDCl3): d 1.30–1.50 (2 H, m), 1.50–1.70 (2 H, m), 1.85–1.95 (1 H, br s),
2.05 (3 H, s), 3.70–3.95 (2 H, m), 4.10–4.20 (1 H, m), 5.70–5.80 (1 H, m);
13C NMR (50.3 MHz, CDCl3): d 16.27, 21.25, 28.06, 35.14, 74.45, 119.78,
142.73; m/z 144 (M+).
The SISR reaction of sulfoxides 3, of which no precedent is
known in the literature, leads to g-hydroxyvinyl sulfides, which
can serve as a synthetic equivalent for b-hydroxy aldehydes8,9
The synthetic potential of this new SISR reaction is currently
under investigation, including chirality transfer from sulfur to
carbon when optically active sulfoxides are used as the
substrates. Furthermore, the SISR reaction will be investigated
for vinyl sulfoxides with other heteroatoms at the geminal
position of the sulfoxide group.
References
1 D. A. Evans and G. C. Andrews, Acc. Chem. Res., 1974, 7, 147.
2 S. Yamagiwa, H. Sato, N. Hoshi, H. Kosugi and H. Uda, J. Chem. Soc.,
Perkin Trans. 1, 1979, 570.
3 R. Tanikaga, Y. Nozaki, T. Tamura and A. Kaji, Synthesis, 1983, 134.
4 K. Burgess, I. Cassidy and I. Henderson, J. Org. Chem., 1991, 56,
2050.
Financial support of this work by the Ministero dell’
Universita` e della Ricerca Scientifica e Tecnologica (MURST),
Italy, is gratefully acknowledged. J. S. and M. A. W. are grateful
for the support from the Erasmus programme (ICP-95-NL-
1007/13).
5 I. Meiser, P. Vermeer and L. Brandsma, Recl. Trav. Chim. Pays-Bas,
1973, 92, 601.
6 G. E. Veenstra and B. Zwanenburg, Recl. Trav. Chim. Pays-Bas, 1976,
95, 37.
7 P. Metzner and T. N. Pham, J. Chem. Soc., Chem. Commun., 1988,
390.
8 B. M. Trost and A. C. Lavoie, J. Am. Chem. Soc., 1983, 105, 5075 and
references cited therein.
9 B. T. Grobel and D. Seebach, Synthesis, 1977, 357.
Footnote
† Selected data for E-6a: yellow oil; nmax(CCl4)/cm21 3620 (OH); 1H NMR
(200 MHz, CDCl3): d 0.90 (3 H, t, J 7.0 Hz), 1.50–1.65 (2 H, m), 1.70 (1
H, br s), 2.25 (3 H, s), 4.05 (1 H, q, J 7.0 Hz), 5.36 and 5.45 (1 H, dd, J 15.0
and 7.5 Hz), 6.30 (1 H, d, J 15.0 Hz); m/z 132 (M+), 114 (M+2H2O).
Received in Cambridge, UK, 19th March 1997; Com.
7/01942D
1012
Chem. Commun., 1997