Paper
RSC Advances
Table 5 Oxidative amidation in DMSO with and without quinone 4c
Conclusions
In conclusion, we have developed an efficient, metal-free
oxidative amidation method under moderate reaction condi-
tions with high yields which is, to our knowledge, the rst
report of this type of oxidation carried out by an organic
oxidizing compound that is neither photoinductive nor
peroxide. The solvents used in this work, acetonitrile and
dimethylsulfoxide, are considered radical stabilizers that favor
the formation of quinoid radicals generated by pyrrolylquinone
facilitating the course of the reaction. We found that unlike
acetonitrile, DMSO is able to carry out the oxidative amidation
reaction of benzaldehyde in the absence of additive or catalyst
although in low performance but interestingly, the reaction
carried out in the presence of pyrrolylquinone/DMSO makes the
Yield (%)
a
b
Entry
Amide
R
1
DMSO
DMSO/4c
1
2
3
4
5
7a
7b
7c
7d
7e
–NO
–OCH
–H
–Cl
–Br
2
30
21
16
19
14
98
86
64
71
57
3
a
Reagents and conditions: aldehyde (0.66 mmol), pyrrolidine (0.79 reaction highly efficient.
ꢀ
b
mmol), DMSO 2 ml, 70 C, 19 h. Reagents and conditions: aldehyde
(
7
0.66 mmol), pyrrolidine (0.79 mmol), 4c (0.02 mmol), DMSO 2 ml,
0 C, 19 h. Isolated yields.
ꢀ
Conflicts of interest
There are no conicts to declare.
Notes and references
1
2
3
A.-E. Wendlandt and S.-S. Stahl, Angew. Chem., Int. Ed., 2015,
4, 14638–14658.
T. Ohnishi, S. T. Ohnishi and J. C. Salerno, Biol. Chem., 2018,
99, 1249.
(a) L. Chac ´o n-Garc ´ı a, M. Valle-S ´a nchez and C. Contreras-
Celedon, Lett. Org. Chem., 2013, 10, 632; (b) M. Tapia-
Ju ´a rez, J. B. Gonz ´a lez-Campos, C. Contreras-Celed ´o n,
D. Corona, E. Cuevas-Ya n˜ ez and L. Chac ´o n-Garc ´ı a, RSC
Adv., 2014, 4, 5660–5665.
5
3
4
5
K. Nakagawa, H. Onoue and K. Minami, Chem. Commun.,
1966, 1, 17.
(a) T. Wiel and M. Bodanszky, The World of Peptides: A Brief
History of Peptide Chemistry, Springer, Berlin, 1991; (b)
M. Castanho and N. Santos, Peptide Drug Discovery and
Development, Wiley-VCH Verlag GmbH & Co. KGaA, 2012.
(a) C. L. Allen and J. M. J. Williams, Chem. Soc. Rev., 2011, 40,
3405–3415; (b) V. F. Christian and A. G. N. Montalbetti,
Tetrahedron, 2005, 61, 10819–10826; (c) A. El-Faham and
F. Albericio, Chem. Rev., 2011, 111, 6557–6602; (d)
S.-Y. Han and Y.-A. Kim, Tetrahedron, 2004, 60, 2447–2467;
Scheme 3 Mechanism proposed of oxidation with quinones.
6
Table 6 Oxidative amidation under inert atmosphere conditions and
a
in the presence of oxygen
(
1
e) J. M. Humphrey and A. R. Chamberlin, Chem. Rev.,
997, 97, 2243–2266; (f) R. A. Shenvi, D. P. O'Malley and
P. S. Baran, Acc. Chem. Res., 2009, 42, 530–541.
Entry
Solvent
Yield (%)
7 (a) A. K. Ghose, V. N. Viswanadhan and J. J. Wendoloski, J.
Comb. Chem., 1999, 1, 55–68; (b) E. Valeur and M. Bradley,
Chem. Soc. Rev., 2009, 38, 606–631.
8 (a) R. Luque, V. Budarin, J. H. Clark and D. J. Macquarrie,
Green Chem., 2009, 11, 459–461; (b) A. Brennf u¨ hrer,
H. Neumann and M. Beller, Angew. Chem., Int. Ed., 2009,
48, 4114–4133.
b
1
CH
CH
3
CN
CN
0
c
2
3
28
30
29
b
3
DMSO
DMSO
c
4
a
Reagents and conditions: aldehyde (0.66 mmol), pyrrolidine (0.79
ꢀ
mmol), 4c (0.02 mmol), solvent 2 ml (CH
3
CN or DMSO), 70 C, 19 h.
b
c
Open ask, without addition of 4c. Argon atmosphere, with
addition of 4c.
9
G. E. Veitch, K. L. Bridgwood and S. V. Ley, Org. Lett., 2008,
0, 3623–3625.
1
This journal is © The Royal Society of Chemistry 2019
RSC Adv., 2019, 9, 18265–18270 | 18269