S. Narayan et al. / Tetrahedron Letters 45 (2004) 757–759
759
3. (a) Kampte, R.; Brenner, S.; Arndt, P. Organometallics
1996, 15, 1071–1074; (b) Fuhrmann, H.; Brenner, S.;
Arndt, P.; Kempe, R. Inorg. Chem. 1996, 35, 6742–6745.
4. (a) Sathyamoorthi, G.; Soong, M. L.; Ross, T. W.; Boyer,
J. H. Hetroatom. Chem. 1993, 4, 603–608; (b) Araki, K.;
Mutai, T.; Shigemitsu, Y.; Yamada, M.; Nakajima, T.;
Kuroda, S.; Shimao, I. J. Chem. Soc., Perkin Trans. 2
1996, 613–617.
5. (a) Schwid, S. R.; Petrie, M. D.; McDermott, M. P.;
Tierney, D. S.; Mason, D. H.; Goodmann, A. D.
Neurology 1997, 48, 817–821; (b) Sellin, L. C. Med. Biol.
1981, 59, 11–20; (c) Davidson, M.; Zemishlany, Z.; Mohs,
R. C. Biol. Psychiatry 1988, 23, 485–490; (d) Segal, J. L.;
Warner, A. L.; Brunnemann, S. R.; Bunten, D. C. Am. J.
Ther. 2002, 9, 29; (e) Cacchi, S.; Carangio, A.; Fabrizi, G.;
Moro, L.; Pace, P. Synlett 1997, 1400–1402.
the product decomposed at 130 °C when heated for
20 min. But in the case of entry 17 the reaction was very
slow, so 150 °C for 30 min was required. We have found
that this method is effective for making chiralstannyl
compound in moderate yield.
The microwave assisted solvent free amination of the
halo-(pyridine or pyrimidine) C–N bond can be
achieved by this method without solvent and metal
catalyst. This method has also shown potential in the
synthesis of enantioenriched N-(2-pyridyl)-2-tributyl-
stannyl-pyrrolidine (3j) or -piperidine (3k), which are the
object of ongoing research.12
6. (a) Matsumoto, K.; Fukuyama, K.; Iida, H.; Toda, M.;
Lown, J. W. Heterocycles 1995, 41, 237–244; (b) Hashi-
moto, S.; Otani, S.; Okamoto, T.; Matsumoto, K.
Heterocycles 1988, 27, 319–322; (c) Ibata, T.; Isogami,
Y.; Toyoda, J. Chem. Lett. 1987, 1187–1190.
7. (a) Wagaw, S.; Buchwald, S. L. J. Org. Chem. 1996, 61,
7240–7242; (b) Brenner, E.; Schneider, R.; Fort, Y.
Tetrahedron 1999, 55, 12829–12842; (c) Urgaonkar, S.;
Nagarajan, M.; Verkade, J. G. Org. Lett. 2003, 5, 815–
818.
8. Brower, K. R. J. Am. Chem. Soc. 1959, 81, 3504–3507.
9. In this work, we used a CEM Discover microwave
apparatus, which is equipped with internal probe that
monitors reaction temperature and pressure, and main-
tains the desired temperature by computer control. Even
with water as a co-solvent the pressure did not exceed 50–
60 psi at 130 °C.
10. Typical experimental procedure: N-(2-pyrimidine)pyrroli-
dine (3h). The pyrrolidine (2.0 mL, 1.72 g, 24.2 mmol), was
added slowly in a 10 mL microwave vial containing 2-
chloropyrimidine (0.50 g, 4.37 mmol). The vial was sealed
by a crimped cap and was placed in a CEM Discover
microwave apparatus. The initial power supplied was
150 W; once the temperature reached 130 °C, the instru-
ment adjusted the power to maintain constant tempera-
ture. The total heating time of the reaction was 30 min.
After completion of the reaction, the reaction mixture was
cooled, diluted with dichloromethane (25 mL), washed
with Na2CO3 solution, water, and finally with brine. The
organic layer was dried over MgSO4, filtered, and the
solvent was removed in vacuo. The crude product was
purified by column chromatography (EE/hexane, 20:80) to
give 0.540 g (83%). 1H NMR (270 MHz, CDCl3):7a 8.26
(m, 2H), 6.40 (m, 1H), 3.52 (m, 4H), 1.94 (m, 4H). 13C
NMR (67 MHz, CDCl3): d 160.3, 157.7, 108.9, 46.6, 25.6.
11. During this experiment we found that by applying high
power (250 W), the pressure rose out of instrument
control, causing the crimped seal to fail. Therefore, we
used 50 W for NaOtBu containing experiments.
Acknowledgements
This work was generously supported by the NIH (GM-
56271). T.S. acknowledges support from NSF in the
2003 summer REU program. Microwave (CEM dis-
cover) and NMR equipment used this work was pur-
chased with support from NIH (P20 R15569) and the
Arkansas Biosciences Institute.
References and notes
1. (a) Linder, M. R.; Podlech, J. Org. Lett. 2001, 3, 1849–
1851; (b) Bora, U.; Saikia, A.; Boruah, R. C. Org. Lett.
2003, 5, 435–438; (c) Tan, K. L.; Vasudevan, A.;
Bergmann, R. G.; Ellaman, J. A.; Souers, A. J. Org. Lett.
2003, 5, 2131–2134; (d) Li, F.; Wang, Q.; Ding, Z.; Tao, F.
Org. Lett. 2003, 5, 2169–2171; (e) Shieh, W. C.; Dell, S.;
Repic, O. Org. Lett. 2001, 3, 4279–4281; (f) Bose, D. S.;
Jayalakshmi, B. J. Org. Chem. 1999, 64, 1713–1714; (g)
Grosignani, S.; White, P. D.; Linclau, B. Org. Lett. 2002,
4, 2961–2963; (h) Westman, J. Org. Lett. 2001, 3, 3745–
3747; (i) Finaru, A.; Berthault, A.; Besson, T.; Guillaumet,
G.; Berteina-Raboin, S. Org. Lett. 2002, 4, 2613–2615; (j)
Khadilkar, B. M.; Rebeiro, G. L. Org. Process Res. Dev.
2002, 6, 826–828; (k) Jiao, G.-S.; Castro, J. C.; Thoresen,
L.; Burgers, K. Org. Lett. 2003, 5, 3675–3677; (l) Zhang,
A.; Neumeyer, J. L. Org. Lett. 2003, 5, 201–203; (m)
Leadbeater, N. E.; Marco, M. Org. Lett. 2002, 4, 2973–
2976; (n) Wannberg, J.; Larhed, M. J. Org. Chem. 2003,
68, 5750–5753; (o) Brain, C. T.; Steer, J. T. J. Org. Chem.
2003, 68, 6814–6816; (p) Erdelyi, M.; Gogoll, A. J. Org.
Chem. 2003, 68, 6431–6434; (q) Spivey, A. C.; Zhu, F.;
Mitchell, M. B.; Davey, S. G.; Jarvest, R. L. J. Org. Chem.
2003, 68, 7379–7385.
2. (a) Wu, T. Y. H.; Schultz, P. G.; Ding, S. Org. Lett. 2003,
5, 3587–3590; (b) Shi, L.; Wang, M.; Fan, F. M.; Tu, Y. Q.
Org. Lett. 2003, 5, 3515–3517; (c) Wang, T.; Magnin, D.
R.; Hamann, L. G. Org. Lett. 2003, 5, 897–900; (d)
Leadbeater, N. E.; Marco, M.; Tominack, B. J. Org. Lett.
2003, 5, 3919–3922.
12. (a) Gawley, R. E.; Low, E.; Chambournier, G. Org. Lett.
1999, 1, 653–655; (b) Chambournier, G.; Gawley, R. E.
Org. Lett. 2000, 2, 1561–1562; (c) Gawley, R. E.; Low, E.;
Zhang, Q.; Harris, R. J. Am. Chem. Soc. 2000, 122, 3344–
3350; (d) Santiago, M.; Low, E.; Chambournier, G.;
Gawley, R. E. J. Org. Chem. 2003, 68, 1561–1564.