Biometals (2010) 23:71–81
81
Marti-Renom MA, Stuart AC, Fiser A, Sanchez R, Melo F, Sali
A (2000) Comparative protein structure modeling of
genes and genomes. Annu Rev Biophys Biomol Struct
29:291–325
May O, Siemann M, Siemann MG, Syldatk C (1998a) The
hydantoin amidohydrolase from Arthrobacter aurescens
DSM 3745 is a zinc metalloenzyme. J Mol Catal B 5:367–
370
May O, Siemann M, Siemann MG, Syldatk C (1998b) Cata-
lytic and structural function of zinc for the hydantoinase
from Arthrobacter aurescens DSM 3745. J Mol Catal B
4:211–218
Mishima T, Ohkuri T, Monji A, Imoto T, Ueda T (2006)
Amyloid formation in denatured single-mutant lysozymes
where residual structures are modulated. Protein Sci
15:2448–2452
References
Abendroth J, Niefind K, May O, Siemann M, Syldatk C,
Schomburg D (2002) The structure of L-hydantoinase
from Arthobacter aurescens leads to an understanding of
dihydropyrimidinase substrate and enantio specificity.
Biochemistry 41:8589–8597
Altenbuchner J, Siemann-Herzberg M, Syldatk C (2001)
Hydantoinases and related enzymes as biocatalysts for the
synthesis of unnatural chiral amino acids. Curr Opin
Biotechnol 12:559–563
Armas A, Sonois V, Mothes E, Mazarguil H, Faller P (2006)
Zinc(II) binds to the neuroprotective peptide humanin. J
Inorg Biochem 100:1672–1678
Brooks KP, Jones EA, Kim BD, Sander EG (1983) Bovine
liver dihydropyrimidine amidohydrolase: purification,
properties, and characterization as a zinc metalloenzyme.
Arch Biochem Biophys 226:469–483
Cheon YH, Kim HS, Han KH, Abendroth J, Niefind K,
Schomburg D, Wang J, Kim Y (2002) Crystal structure of
D-hydantoinase from Bacillus stearothermophilus: insight
into the stereochemistry of enantioselectivity. Biochem-
istry 41:9410–9417
Cheon YH, Park HS, Lee SC, Lee DE, Kim HS (2003)
Structure-based mutational analysis of the active site
residues of D-hydantoinase. J Mol Catal B 26:217–222
Erk I, Huet JC, Duarte M, Duquerroy S, Rey F, Cohen J,
Lepault J (2003) A zinc ion controls assembly and sta-
bility of the major capsid protein of rotavirus. Virol J
77:3595–3601
Niu LX, Zhang XY, Shi YW, Yuan JM (2007) Subunit dis-
sociation and stability alteration of D-hydantoinase deleted
at the terminal amino acid residue. Biotechnol Lett 29:
303–308
´
´
Pozo C, Rodelas B, de la Escalera S, Gonzalez-Lopez J (2002)
D, L-Hydantoinase activity of an Ochrobactrum anthropi
strain. J Appl Microbiol 92:1028–1034
Shaw CF III, Savas MM, Petering DH (1991) Ligand substi-
tution and sulfhydryl reactivity of metallothionein.
Methods Enzymol 205:401–414
Shi YW, Niu LX, Feng X, Yuan JM (2006) Purification,
enzymatic properties of a recombinant D-hydantoinase and
its dissociation by zinc ion. World J Microbiol Biotechnol
22:675–680
Shi YW, Zhang L, Yuan JM, Xiao H, Yang XQ, Niu LX (2008)
Zinc binding site in PICK1 is dominantly located at the
CPC motif of its PDZ domain. J Neurochem 106:1027–
1034
Vieille C, Zeikus GJ (2001) Hyperthermophilic enzymes:
sources, uses, and molecular mechanisms for thermosta-
bility. Microbiol Mol Biol Rev 65:1–43
Vlasova TN, Ugarova NN (2007) Quenching of the fluorescence
of Tyr and Trp residues of firefly luciferase from Luciola
mingrelica by the substrates. Biochemistry (Moscow)
72:962–967
Xu Z, Liu Y, Yang Y, Jiang W, Arnold E, Ding J (2003)
Crystal structure of D-hydantoinase from Burkholderia
pickettii at a resolution of 2.7 Angstroms: insights into the
molecular basis of enzyme thermostability. J Bacteriol
185:4038–4049
Zhang XY, Niu LX, Shi YW, Yuan JM (2008) The flexibility
of the non-conservative region at the C terminus of D-
hydantoinase from Pseudomonas putida YZ-26 is extre-
mely limited. Appl Biochem Biotechnol 144:237–247
Zhao GH, Pu P, Hu XS, Zhao L (2004) Effect of Zn(II) on the
structure and biological activity of natural b-NGF. Acta
Biochim Biophys Sin 36:99–104
Gojkovic Z, Rislund L, Andersen B, Sandrini MPB, Cook PF,
ˇ
Schnackerz KD, Piskur
J (2003) Dihydropyrimidine
amidohydrolases and dihydroorotases share the same
origin and several enzymatic properties. Nucleic Acids
Res 31:1683–1692
Golynskiy MV, Davis TC, Helmann JD, Cohen SM (2005)
Metal-induced structural organization and stabilization of
the metalloregulatory protein MntR. Biochemistry 44:
3380–3389
Huang DTC, Thomas MAW, Christopherson RI (1999) Diva-
lent metal derivatives of the hamster dihydroorotase
domain. Biochemistry 38:9964–9970
Jahnke K, Podschun B, Schnackerz KD, Kautz J, Cook PF
(1993) Acid–base catalytic mechanism of dihydropyrim-
idinase from pH studies. Biochemistry 32:5160–5166
Kikugawa M, Kaneko M, Fujimoto-Sakata S, Maeda M, Ka-
wasaki K, Takagi T, Tamaki N (1994) Purification,
characterization and inhibition of dihydropyrimidinase
from rat liver. Eur J Biochem 219:393–399
ˇ
Lohkamp B, Andersen B, Piskur J, Dobritzsch D (2006) The
crystal structures of dihydropyrimidinases reaffirm the
close relationship between cyclic amidohydrolases and
explain their substrate specificity. J Biol Chem 281:
13762–13776
123