Y. Takeuchi et al. / Journal of Fluorine Chemistry 97 (1999) 65±67
67
References
[1] Biomedical Aspects of Fluorine Chemistry R. Filler, Y. Kobayashi
(Eds.), Elsevier Biomedical Press, New York, 1982.
[2] J.T. Welch, Tetrahedron 43 (1987) 3123.
Scheme 2.
[3] G. Furin in: L. German, S. Zemskov (Eds.), New Fluorinating
Agents in Organic Synthesis, Springer, Berlin, 1989, p. 35.
[4] G.G. Furin, Sov. Sci. Rev. B. Chem. 16 (1991) 1.
[5] S.T. Purrington, B.S. Kagen, T.B. Patrick, Chem. Rev. 86 (1986)
997.
enolate (entries 1, 2), producing the a-¯uoroketone in good
yield when subjected to ¯uorination with 1 in THF at 788C
to 208C. Under similar conditions, lithium enolates
derived from other ketones such as tetralones (4b,c), inda-
nones (4d±g) and benzosuberons (4h,i) also gave the cor-
responding a-¯uoroketones in good yields. The sodium
salts of b-dicarbonyl compounds, including cyclic and
acyclic ketones (4j±l), were also successfully ¯uorinated
with 1 to give the products in good to excellent yields. It is
noteworthy that ¯uorination of silyl enol ether (6) with 1
proceeded under neutral conditions to give 5e, although the
yield was modest (66%). Scheme 2.
In summary, we have synthesized N-¯uoro-3-ethyl-3-
methyl-1,1-dioxo-2,3-dihydro-1H-1l6-benzo[e]1,2-thiazin-
4-one (1) and have found it to be an effective new agent for
electrophilic ¯uorination of carbanions. The presence of an
asymmetric carbon at the position adjacent to the nitrogen
atom of 1 points to the obvious potential of development
of asymmetric ¯uorinating agents [24±27] based on this
structure. Such agents should be very useful for enantio-
selective ¯uorinations to produce chiral organo¯uorine
compounds [28]. Accordingly, synthetic studies on asym-
metric variants of 1 are now under investigation.
[6] R.E. Banks, S.N. Mohialdin-Khaffaf, G.S. Lal, I. Sharif, R.G. Syvret,
J. Chem. Soc. Chem. Commun. (1992) 595.
[7] M. Abdul-Ghani, R.E. Banks, M.K. Besheesh, I. Sharif, R.G. Syvret,
J. Fluorine Chem. 73 (1995) 255.
[8] G.S. Lal, G.P. Pez, R.G. Syvret, Chem. Rev. 96 (1996) 1737.
[9] T. Umemoto, Rev. Heteroatom Chem. 10 (1994) 123.
[10] T. Umemoto, S. Fukami, G. Tomizawa, K. Harasawa, K. Kawada, K.
Tomita, J. Am. Chem. Soc. 112 (1990) 8563.
[11] R.E. Banks, J. Fluorine Chem. 87 (1998) 1.
[12] W.E. Barnette, J. Am. Chem. Soc. 106 (1984) 452.
[13] D.H.R. Barton, R.H. Hesse, M.M. Pechet, H.T. Toh, J. Chem. Soc.,
Perkin Trans. 1 (1974) 732.
[14] S. Singh, D.D. DesMarteau, S.S. Zuberi, M. Witz, H.-N. Huang, J.
Am. Chem. Soc. 109 (1987) 7194.
[15] E. Differding, R.W. Lang, Helv. Chim. Acta 72 (1989) 1248.
[16] E. Differding, H. Ofner, Synlett, (1991) 187.
[17] F.A. Davis, P. Zhou, C.K. Murphy, Tetrahedron Lett. 34 (1993) 3971.
[18] F.A. Davis, W. Han, C.K. Murphy, J. Org. Chem. 60 (1995) 4730.
[19] I. Cabrera, W.K. Appel, Tetrahedron 51 (1995) 10205.
[20] R.A. Abramovitch, K.M. More, I. Shinkai, P.C. Srinivasan, J. Chem.
Soc., Chem. Commun. (1976) 771.
[21] N. Ishikawa, T. Kitazume, T. Yamazaki, Y. Mochida, T. Tatsuno,
Chem. Lett. (1981) 761.
[22] D.H.R. Barton, R.H. Hesse, R.E. Markwell, M.M. Pechet, J. Am.
Chem. Soc. 98 (1976) 3034.
[23] D.H.R. Barton, R.H. Hesse, R.E. Markwell, M.M. Pechet, S. Rozen,
J. Am. Chem. Soc. 98 (1976) 3036.
[24] E. Differding, R.W. Lang, Tetrahedron Lett. 29 (1988) 6087.
[25] F.A. Davis, W. Han, Tetrahedron Lett. 32 (1991) 1631.
[26] F.A. Davis, P. Zhou, C.K. Murphy, G. Sundarababu, H. Qi, W. Han,
R.M. Przeslawski, B.-C. Chen, P.J. Carroll, J. Org. Chem. 63 (1998)
2273.
Acknowledgements
This work was supported by a Grant-in-aid for Scienti®c
Research from the Ministry of Education, Science, Sports
and Culture, Japan. N.S. wishes to thank the Kowa Life
Science Foundation for support.
[27] Y. Takeuchi, A. Satoh, T. Suzuki, A. Kameda, M. Dohrin, T. Satoh,
T. Koizumi, K.L. Kirk, Chem. Pharm. Bull. 45 (1997) 1085.
[28] P. Bravo, G. Resnati, Tetrahedron: Asymmetry 1 (1990) 661.