Room-Temperature Suzuki-Miyaura Reaction Catalyzed by Palladium Nanoparticles
To the best of our knowledge, this PdNPs@
Bmim]Lac system exhibits outstanding catalytic activ-
catalytic activity in promoting Suzuki-Miyaura reac-
[
tions at r.t. in air with an environmentally friendly sol-
vent system. The concept of designing new metal NP
catalysts employing ILs based on natural anions with
coordinating and protecting groups is attractive, which
would offer good prospects for the development of
highly efficient, stable, and recyclable catalysts for cou-
pling reactions. Further studies aimed at a series of or-
ganic transformations using other renewable ILs to sta-
bilize metal NPs as well as delineation of the relevant
mechanism, are currently underway in our laboratories.
ity among the reported catalysts used for the Suzuki-
Miyaura coupling reaction in ILs in terms of catalyst
loading (1.0 mol% Pd) at r.t. condition. PdNPs or
Pd-ligand complexes in ILs have been widely reported
to efficiently catalyze the Suzuki-Miyaura coupling of
aryl bromides and iodides with phenylboronic acid.
However, these coupling reactions require high tem-
peratures up to 100 ℃, high catalyst loadings, or envi-
[
26]
ronmentally unfriendly solvents.
The activity of the
present catalyst is also comparable to that of a recently
[27]
reported PdNPs-phosphine ligand catalyst.
It is
Acknowledgements
thought that the carboxyl and hydroxyl groups of the
lactate anion can provide sufficient stabilization and aid
the dispersion of the PdNPs, as hydroxyl-functionalized
ILs have been demonstrated to facilitate the formation
of near-monodisperse NPs and to enhance their stabil-
This work was supported by the National Natural
Science Foundation of China (Nos. 21336002 and
2
1276094) and the Doctoral Fund of Ministry of Educa-
tion of China (No. 20130172110043).
[
18,28]
ity.
References
The reusability of our prepared catalyst was next in-
vestigated in the coupling of 4-bromoanisole with phe-
nylboronic acid under the optimized condition. As
shown in Figure 5, the catalyst is still of high catalytic
activity without obvious decrease. A TEM image of the
catalyst after the sixth run (Figure 2d) indicates that the
mean diameter of the NPs (1.54±0.38 nm) is very close
to that of the fresh sample (Figure 2a, 1.50±0.39 nm).
AAS shows that about 0.2% of the total palladium ap-
pears in the hexane extract. It is interesting to see that
the recovered catalyst after eight runs could still give
the similar yield of product as fresh catalyst at the long-
[1] Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
[2] (a) Ghosh Chaudhuri, R.; Paria, S. Chem. Rev. 2012, 112, 2373; (b)
Ott, L. S.; Finke, R. G. Coord. Chem. Rev. 2007, 251, 1075.
[
[
3] (a) Zaera, F. Chem. Soc. Rev. 2013, 42, 2746; (b) Rao, C. N. R.;
Kulkarni, G. U.; Thomas, P. J.; Edwards, P. P. Chem. Soc. Rev. 2000,
2
9, 27.
4] (a) Cushing, B. L.; Kolesnichenko, V. L.; O'connor, C. J. Chem. Rev.
004, 104, 3893; (b) White, R. J.; Luque, R.; Budarin, V. L.; Clark,
2
J. H.; Macquarrie, D. J. Chem. Soc. Rev. 2009, 38, 481; (c) Chun, Y.
S.; Shin, J. Y.; Song, C. E.; Lee, S. G. Chem. Commun. 2008, 942;
(d) Tao, L. M.; Xie, Y. X.; Deng, C. L.; Li, J. H. Chin. J. Chem.
2
009, 27, 1365.
th
[5] (a) Fihri, A.; Bouhrara, M.; Nekoueishahraki, B.; Basset, J. M.; Pol-
shettiwar, V. Chem. Soc. Rev. 2011, 40, 5181; (b) Yan, N.; Xiao, C.;
Kou, Y. Coord. Chem. Rev. 2010, 254, 1179; (c) Parvulescu, V. I.;
Hardacre, C. Chem. Rev. 2007, 107, 2615.
er reaction time (9 run).
[
6] (a) Mu, X. D.; Meng, J. Q.; Li, Z. C.; Kou, Y. J. Am. Chem. Soc.
005, 127, 9694; (b) Antonietti, M.; Kuang, D.; Smarsly, B.; Zhou,
2
Y. Angew. Chem., Int. Ed. 2004, 43, 4988; (c) Plechkova, N. V.;
Seddon, K. R. Chem. Soc. Rev. 2008, 37, 123; (d) Yan, N.; Yuan, Y.;
Dykeman, R.; Kou, Y.; Dyson, P. J. Angew. Chem., Int. Ed. 2010,
4
9, 5549.
[
[
7] (a) Dupont, J. J. Braz. Chem. Soc. 2004, 15, 341; (b) Dupont, J.;
Scholten, J. D. Chem. Soc. Rev. 2010, 39, 1780.
8] (a) Zhao, D.; Fei, Z.; Geldbach, T. J.; Scopelliti, R.; Dyson, P. J. J.
Am. Chem. Soc. 2004, 126, 15876; (b) Amatore, C.; Jutand, A. Acc.
Chem. Res. 2000, 33, 314; (c) Amatore, C.; Jutand, A. J. Organomet.
Chem. 1999, 576, 254; (d) Xu, L. J.; Chen, W. P.; Xiao, J. L. Or-
ganometallics 2000, 19, 1123; (e) Roszak, R.; Trzeciak, A. M.; Per-
nak, J.; Borucka, N. Appl. Catal. A: Gen. 2011, 409-410, 148; (f)
Umpierre, A. P.; Machado, G.; Fecher, G. H.; Morais, J.; Dupont, J.
Adv. Synth. Catal. 2005, 347, 1404; (g) Yang, X.; Yan, N.; Fei, Z.;
Crespo-Quesada, R. M.; Laurenczy, G.; Kiwi-Minsker, L.; Kou, Y.;
Dyson, Y. L. A. P. J. Inorg. Chem. 2008, 47, 7444.
Figure 5 Recycling tests for the model reaction. Reaction con-
ditions: 4-bromoanisole (1.0 mmol), phenylboronic acid (1.1
mmol), Na
3 4 2 2
PO •12H O (3.0 mmol), EtOH/H O (V∶V=2∶1;
6
.0 mL) and catalyst (1.0 mol% of Pd) in air for 4 h; Isolated
[
9] (a) Vollmer, C.; Janiak, C. Coord. Chem. Rev. 2011, 255, 2039; (b)
Ott, L. S.; Finke, R. G. Inorg. Chem. 2006, 45, 8382.
yield. *: The reaction time is 6 h.
[
[
10] (a) Petkovic, M.; Seddon, K. R.; Rebelo, L. P.; Silva Pereira, C.
Chem. Soc. Rev. 2011, 40, 1383; (b) Li, X. H.; Zhao, J. G.; Li, Q. H.;
Wang, L. F.; Tsang, S. C. Dalton Trans. 2007, 1875.
Conclusions
In conclusion, a PdNPs catalyst (PdNPs@[Bmim]-
Lac) stabilized by an IL with a natural, reusable, and
non-toxic lactate anion has been prepared by a very
simple method under mild conditions. It exhibits high
11] (a) Scholten, J. D.; Leal, B. C.; Dupont, J. ACS Catal. 2012, 2, 184;
(
b) Balanta, A.; Godard, C.; Claver, C. Chem. Soc. Rev. 2011, 40,
4973; (c) Amini, M.; Bagherzadeh, M.; Rostamnia, S. Chin. Chem.
Lett. 2013, 24, 433.
Chin. J. Chem. 2014, XX, 1—8
© 2014 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
www.cjc.wiley-vch.de
7