10.1002/anie.201903308
Angewandte Chemie International Edition
COMMUNICATION
Zhang, T. Xiong, Q. Zhang, Angew. Chem. Int. Ed. 2017, 56, 13130;
Angew. Chem. 2017, 129, 13310; e) H. Zhou, Z. Wei, J. Zhang, H. Yang,
C. Xia, G. Jiang, Angew. Chem. Int. Ed. 2017, 56, 1077; Angew. Chem.
2017, 129, 1097; f) L. Liang, H.-Y. Niu, M.-S. Xie, G.-R. Qu, H.-M. Guo,
Org. Chem. Front. 2018, 5, 3148; g) S. Xu, Z.-M. Zhang, B. Xu, B. Liu, Y.
Liu, J. Zhang, J. Am. Chem. Soc. 2018, 140, 2272.
Keywords: regiodivergent
catalyzed hydroboration • catalysis
•
enantiodivergent
•
rhodium-
[1]
[2]
a) D. S. Matteson, J. Org. Chem. 2013, 78, 10009; b) C. Sandford, V. K.
Aggarwal, Chem. Commun. 2017, 53, 5481.
a) B. C. Das, P. Thapa, R. Karki, C. Schinke, S. Das, S. Kambhampati,
S. K. Banerjee, P. V. Veldhuizen, A. Verma, L. M. Weiss, T. Evans,
Future Med. Chem. 2013, 5, 653; b) D. B. Diaz, A. K. Yudin, Nat. Chem.
2017, 9, 731; c) G. Antonio Abad, R. Alexey, A.-J. Erik, G. T.-F. Jose,
Curr. Med. Chem. 2018, 25, 1; d) G. R. Mereddy, A. Chakradhar, R. M.
Rutkoski, S. C. Jonnalagadda, J. Organomet. Chem. 2018, 865, 12.
For recent examples, see a) J. Chen, T. Xi, Z. Lu, Org. Lett. 2014, 16,
6452; b) J. Chen, T. Xi, X. Ren, B. Cheng, J. Guo, Z. Lu, Org. Chem.
Front. 2014, 1, 1306; c) L. Zhang, Z. Zuo, X. Wan, Z. Huang, J. Am.
Chem. Soc. 2014, 136, 15501; d) N. Hu, G. Zhao, Y. Zhang, X. Liu, G.
Li, W. Tang, J. Am. Chem. Soc. 2015, 137, 6746; e) Z. Wang, X. He, R.
Zhang, G. Zhang, G. Xu, Q. Zhang, T. Xiong, Q. Zhang, Org. Lett. 2017,
19, 3067.
[10] The absolute configuration for (R)-4a was determined by conversion to
(R)-2,3-diphenylpropanol; see SI.
[11] The absolute configuration for (R)-5a was determined by conversion to
(R)-2-phenylpropane-1,2-diol; see SI.
[12] Other phenyl phosphites also afford predominantly -boration. For
example, the (4-trifluoromethyl)phenyl phosphite T2c (Ar = 4-MeC6H4)
gives (1:8 :) with enantioselectivity favoring re-face addition (92:8 er),
and the 4-cyanophenyl phosphite T2d (Ar = 4-MeC6H4) is similar.
[13] The metal-to-ligand ratio (Rh:L) employed varies on a case-by-case
basis to maximize enantioselectivity, see SI.
[3]
[14] Competing alkene reduction typically accounts for low yields of boronic
ester; see V. M. Shoba, J. M. Takacs, J. Am. Chem. Soc. 2017, 139,
5740.
[4]
[5]
For related publications, see a) V. M. Shoba, N. C. Thacker, A. J. Bochat,
J. M. Takacs, Angew. Chem. Int. Ed. 2016, 55, 1465; Angew. Chem.
2016, 128, 1487; b) S. Chakrabarty, J. M. Takacs, J. Am. Chem. Soc.
2017, 139, 6066; c) S. Chakrabarty, J. M. Takacs, ACS Catal. 2018, 8,
10530.
[15] In scaling up to 2.65 mmol of 3a, a reduced catalyst (0.5 mol%) and 1:1
Rh:L ratio afforded: 4a (70%, 97:3 er) using T1a and 5a (81% 93:7 er)
using T2b.
[16] a) A. J. J. Lennox, G. C. Lloyd-Jones, Angew. Chem. Int. Ed. 2012, 51,
9385; Angew. Chem. 2012, 124, 9519.
a) N. Matsuda, K. Hirano, T. Satoh, M. Miura, J. Am. Chem. Soc. 2013,
135, 4934; b) T. Jia, P. Cao, B. Wang, Y. Lou, X. Yin, M. Wang, J. Liao,
J. Am. Chem. Soc. 2015, 137, 13760; c) B. Chen, P. Cao, X. Yin, Y. Liao,
L. Jiang, J. Ye, M. Wang, J. Liao, ACS Catal. 2017, 7, 2425; d) K. M.
Logan, M. K. Brown, Angew. Chem. Int. Ed. 2017, 56, 851; Angew. Chem.
2017, 129, 869.
[17] V. Bagutski, A. Ros, V. K. Aggarwal, Tetrahedron 2009, 65, 9956.
[18] S. J. Lee, K. C. Gray, J. S. Paek, M. D. Burke, J. Am. Chem. Soc. 2008,
130, 466.
[19] a) K. M. Sadhu, D. S. Matteson, Organometallics 1985, 4, 1687; b) S. P.
Thomas, R. M. French, V. Jheengut, V. K. Aggarwal, Chem. Rec. 2009,
9, 24.
[6]
a) R. Sakae, K. Hirano, M. Miura, J. Am. Chem. Soc. 2015, 137, 6460;
b) W. Su, T.-J. Gong, X. Lu, M.-Y. Xu, C.-G. Yu, Z.-Y. Xu, H.-Z. Yu, B.
Xiao, Y. Fu, Angew. Chem. Int. Ed. 2015, 54, 12957; Angew. Chem.
2015, 127, 13149; c) W. Su, T.-J. Gong, Q. Zhang, Q. Zhang, B. Xiao, Y.
Fu, ACS Catal. 2016, 6, 6417; d) S. R. Sardini, M. K. Brown, J. Am. Chem.
Soc. 2017, 139, 9823; e) K. B. Smith, M. K. Brown, J. Am. Chem. Soc.
2017, 139, 7721; f) T. Jia, Q. He, R. E. Ruscoe, A. P. Pulis, D. J. Procter,
Angew. Chem. Int. Ed. 2018, 57, 11305; Angew. Chem. 2018, 130,
11475.
[20] a) R. P. Sonawane, V. Jheengut, C. Rabalakos, R. Larouche-Gauthier,
H. K. Scott, V. K. Aggarwal, Angew. Chem. Int. Ed. 2011, 50, 3760;
Angew. Chem. 2011, 123, 3844.
[21] a) A. Ros, V. K. Aggarwal, Angew. Chem. Int. Ed. 2009, 48, 6289; Angew.
Chem. 2009, 121, 6407.
[22] A. Bonet, M. Odachowski, D. Leonori, S. Essafi, V. K. Aggarwal, Nat.
Chem. 2014, 6, 584.
[23] S. Nave, R. P. Sonawane, T. G. Elford, V. K. Aggarwal, J. Am. Chem.
Soc. 2010, 132, 17096.
[7]
[8]
D. P. Ojha, K. R. Prabhu, Org. Lett. 2016, 18, 432.
[24] S. N. Mlynarski, A. S. Karns, J. P. Morken, J. Am. Chem. Soc. 2012, 134,
16449.
For the use of enantiomeric catalysts with chiral substrates to effect
regiodivergent catalytic reactions, see: N. Funken, Y.-Q. Zhang, A.
Gansäuer, Chem. - Eur. J. 2017, 23, 19.
[25] a) B. S. L. Collins, C. M. Wilson, E. L. Myers, V. K. Aggarwal, Angew.
Chem. Int. Ed. 2017, 56, 11700; Angew. Chem. 2017, 129, 11860.
[26] S. Chakrabarty, H. Palencia, M. D. Morton, R. O. Carr, J. M. Takacs,
Chem. Sci. 2019, DOI: 10.1039/c8sc05613g.
[9]
For examples of regiodivergent, enantioselective, metal-catalyzed
reactions, see a) D. M. Dalton, A. K. Rappé, T. Rovis, Chem. Sci. 2013,
4, 2062; b) E. Cahard, H. P. J. Male, M. Tissot, M. J. Gaunt, J. Am. Chem.
Soc. 2015, 137, 7986; c) E. Richmond, I. U. Khan, J. Moran, Chem. - Eur.
J. 2016, 22, 12274; d) G. Xu, H. Zhao, B. Fu, A. Cang, G. Zhang, Q.
This article is protected by copyright. All rights reserved.