Page 3 of 3
ChemComm
DOI: 10.1039/C4CC08902B
Chemler and M. T. Bovino, ACS Catalysis, 2013, 3, 1076; (e) J. P.
Wolfe, Angew. Chem. Int. Ed., 2012, 51, 10224; (f) Y. Shimizu, M.
Kanai, Tetrahedron Lett., 2014, 55, 3727; (g) B. Jacques and K.
Muñiz, in Catalyzed CarbonꢀHeteroatom Bond Formation (Ed.: A.
K. Yudin), Wiley-VCH: Weinheim, 2010, pp. 119-135; (h) H. C.
Kolb, M. S. Van-Nieuwenhze and B. K. Sharpless, Chem. Rev.,
1994, 94, 2483; (i) G. Li, T.-T. Chang and B. K. Sharpless, Angew.
Chem. Int. Ed. Engl., 1996, 35, 451; (j) G. Liu, Org. Biomol. Chem.,
2012, 10, 6243; (k) P. Chen and G. Liu, Synthesis, 2013, 45, 2919.
(a) W.-T. Wei, M.-B. Zhou, J.-H. Fan, W., Liu, R.-J. Song, Y. Liu,
M. Hu, P. Xie and J.-H. Li, Angew. Chem. Int. Ed., 2013, 52, 3638;
(b) M.-B. Zhou, C.-Y. Wang, R.-J. Song, Y. Liu, W.-T. Wei and J.-
H. Li, Chem. Commun., 2013, 49, 10817; (c) J.-L. Zhang, Y. Liu,
R.-J. Song, G.-F. Jiang and J.-H. Li, Synlett, 2014, 25, 1031; (d) Y.
Meng, L.-N. Guo, H. Wang and X.-H. Duan, Chem. Commun., 2013,
49, 7540; (e) S.-L. Zhou, L.-N. Guo, H. Wang and X.-H. Duan,
Chem. Eur. J., 2013, 19, 12970; (f) H. Wang, L.-N. Guo and X.-H.
Duan, Chem. Commun., 2013, 49, 10370; (g) H. Wang, L.-N. Guo
and X.-H. Duan, Org. Lett., 2013, 15, 5254; (h) Z.-Z. Zhou, H.-L.
Hua, J.-Y. Luo, Z.-S. Chen, P.-X. Zhou, X.-Y. Liu and Y.-M. Liang,
Tetrahedron, 2013, 69, 10030; (i) Z. Li, Y. Zhang, L. Zhang and Z.-
Q. Liu, Org. Lett., 2014, 16, 382; (j) J.-H. Fan, W.-T. Wei, M.-B.
Zhou, R.-J. Song and J.-H. Li, Angew. Chem. Int. Ed., 2014, 53,
6650; (k) M.-Z. Lu and T.-P. Loh, Org. Lett., 2014, 16, 4698; (l) Y.
Liu, J.-L. Zhang, R.-J. Song and J.-H. Li, Org. Chem. Front., 2014,
DOI: 10.1039/C4Q000251B, and referneces cited therein; (m) S.
Qiu, T. Xu, J. Zhou, Y. Gao and G. Liu, J. Am. Chem. Soc., 2010,
132, 2856; (n) T. Wu, G. Yin and G. Liu, J. Am. Chem. Soc., 2009,
131, 16354; (o) X. Mu, T. Wu, H. Wang, Y. Guo and G. Liu, J. Am.
Chem. Soc., 2012, 134, 878; (p) H. Zhu, P. Chen and G. Liu, J. Am.
Chem. Soc., 2014, 136, 1766.
45
50
2
55
Scheme 2 Control Experiments.
The possible mechanism outlined in Scheme
3 was
proposed for the oxidative difunctionalization reaction.2-4
60
65
t
5
Initially, TBPB is split into BuO⋅ radical and PhCOO⋅ radical
under heating, supporting by the results of entries 1, 4 and 5
in Table 1. Subsequently, single-electron-transfer (SET) takes
place to form alkyl radical A, followed by addition to the C-C
double bond of substrate 1a affords new alkyl radical B.
10 Within alkyl radical intermediate B, 1,2-migration of aryl
group occurs via spiro[2,5]octadienyl radical C to produce
intermediate D.4 Finally, intermediate D is easily converted
into product 3aa with the aid of TBPB under heating.
70
3
4
(a) T, Wu, X, Mu and G.-S. Liu, Angew. Chem. Int. Ed., 2011, 50,
12578; (b) H. Zhang, P. Chen and G. Liu, Synlett, 2012, 23, 2749.
The neophyl rearrangement: (a) C. Rüchardt and R. Hecht, Chem.
Ber., 1965, 98, 2471; (b) M. Tada, K. Inoue and M. Okabe, Bull.
Chem. Soc. Jpn., 1983, 56, 1420; (c) A. Studer and M. Bossart,
Tetrahedron, 2001, 57, 9649; (d) C. S. A. Antunes, M. Bietti, G.
Ercolani, O. Lanzalunga and M. Salamone, J. Org. Chem., 2005, 70,
3884; For papers on the difunctionalization of alkenes through 1,2-
aryl migration: (e) X. Liu, F. Xiong, X. Huang, L. Xu, P. Li and X.
Wu, Angew. Chem. Int. Ed., 2013, 52, 6962; (f) H. Egami, R.
Shimizu, Y. Usui and M. Sodeoka, Chem. Commun., 2013, 49, 7346;
(g) X.-Q. Chu, Y. Zi, H. Meng, X.-P. Xu and S.-J. Ji, Chem.
Commun., 2014, 50, 7642; (h) X.-Q. Chu, H. Meng, Y. Zi, X.-P. Xu
and S.-J. Ji, Chem. Commun., 2014, 50, 9718; (i) X.-Q. Chu, H.
Meng, Y. Zi, X.-P. Xu and S.-J. Ji, Chem. Eur. J., 2014, 20, DOI:
10.1002/chem.201404463; (j) H. Egami, R. Shimizu, Y. Usui and M.
Sodeoka, Chem. Commun. 2013, 49, 7346; (k) X. Liu, X. Wu,
Synlett, 2013, 1882; (l) Z.-M. Chen, W. Bai, S.-H. Wang, B.-M.
Yang, Y.-Q. Tu and F.-M. Zhang, Angew. Chem. Int. Ed., 2013, 52,
75
80
85
15
Scheme 3 Possible Mechanism.
90
In summary, we have illustrated the first oxidative 1,2-
alkylarylation between the C-C double bonds of α-aryl allylic
alcohols and the
α
-C(sp3)-H bonds of acetonitriles using
9781; For
a special review on the Tu-type semipinacol
rearrangement: (m) B. Wang and Y.-Q. Tu, Acc. Chem. Res., 2011,
44, 1207; (n) Z.-L. Song, C.-A. Fan and Y.-Q. Tu, Chem. Rev., 2011,
111, 7523.
TBPB as oxidant under metal-free conditions. This method
95
20 achieves the C(sp3)-H oxidative coupling with the C-C double
bond and 1,2-aryl-migration, and provides an efficient and
highly atom-economic access to various acyclic molecules, 5-
oxo-pentanenitriles, through the oxidative 1,2-alkylarylation
of alkenes.
5
For selected reviews: (a) C.-J. Li, Acc. Chem. Res., 2009, 42, 335;
(b) G. P. Mcglacken, L. M. Bateman and L. Bateman, Chem. Soc.
Rev., 2009, 38, 2447; (c) D. Shabashov, Acc. Chem. Res., 2009, 42,
1074; (d) J. A. Ashenhurst, Chem. Soc. Rev., 2010, 39, 540; (e) S. H.
Cho, J. Y. Kim, J. Kwak and S. Chang, Chem. Soc. Rev., 2011, 40,
5068; (f) J. Le Bras and J. Muzart, Chem. Rev., 2011, 111, 1170; (g)
C. Liu, H. Zhang, W. Shi and A. Lei, Chem. Rev., 2011, 111, 1780;
(h) Y.-X. Xie, R.-J. Song, J.-N. Xiang and J.-H. Li, Chin. J. Org.
Chem., 2012, 32, 1555; (i) C. Zhang, C. Tang and N. Jiao, Chem.
Soc. Rev., 2012, 41, 3464; (j) F. Guo, M. D. Clift and R. J. Thomson,
Eur. J. Org. Chem., 2012, 4881; (k) M. Grzybowski, K. Skonieczny,
H. Butenschön and D. T. Gryko, Angew. Chem. Int. Ed., 2013, 52,
9900; (l) S. A. Girard, T. Knauber and C.-J. Li, Angew. Chem. Int.
Ed., 2014, 53, 74.
(a) K. Friedrich and K. Wallenfels, The Chemistry of the Cyano
Group, Wiley-Interscience: New York, 1970; (b) A. J. Fatiadi, In
Preparation and Synthetic Applications of Cyano Compounds (Eds.:
S. Patai, and Z. Rappaport), Wiley: New York, 1983. (c) R. C.
Larock, Comprehensive Organic Transformations; VCH: New York,
1989; (d) R. J. H. Gregory, Chem. Rev. 1999, 99, 3649; (e) A.
Kleemann, J. Engel, B. Kutscher and D. Reichert, Pharmaceutical
Substances: Synthesis, Patents, Applications, 4th ed.; Thieme:
Stuttgart, Germany, 2001; (f) J. S. Miller and J. L. Manson, Acc.
Chem. Res. 2001, 34, 563; (g) M. B. Smith and J. March, March’s
Advanced Organic Chemistry: Reactions, Mechanisms, and
Structure, 6th ed.; Wiley: Hoboken,NJ, 2007.
100
105
110
115
120
25
This research was supported by the NSFC (Nos. 21172060
and 21472039) and Hunan Provincial Natural Science
Foundation of China (No. 13JJ2018).
Notes and references
a State Key Laboratory of Chemo/Biosensing and Chemometrics, College
30 of Chemistry and Chemical Engineering, Hunan University, Changsha
410082, China. Fax: 0086731 8871 3642; Tel: 0086731 8882 2286; Eꢀ
† Electronic Supplementary Information (ESI) available: [details of any
supplementary information available should be included here]. See
35 DOI: 10.1039/b000000x/
6
‡ Footnotes should appear here. These might include comments relevant
to but not central to the matter under discussion, limited experimental and
spectral data, and crystallographic data.
1
For selected reviews on the alkene difunctionalization: (a) K. Muñiz,
Chem. Soc. Rev., 2004, 33, 166; (b) V. Kotov, C. C. Scarborough
and S. S. Stahl, Inorg. Chem., 2007, 46, 1910; (c) R. I. McDonald,
G. Liu and S. S. Stahl, Chem. Rev., 2011, 111, 2981; (d) S. R.
40
This journal is © The Royal Society of Chemistry [year]
Journal Name, [year], [vol], 00–00 | 3