2 (a) A. Burns, H. Ow and U. Wiesner, Chem. Soc. Rev., 2006, 35, 1028;
(b) L. Wang, K. Wang, S. Santra, X. Zhao, L. R. Hilliard, J. E. Smith,
Y. Wu and W. Tan, Anal. Chem., 2006, 78, 647; (c) Y.-S. Lin and
C. L. Haynes, Chem. Mater., 2009, 21, 3979.
3 (a) A. Burns, P. Sengupta, T. Zedayko, B. Baird and U. Wiesner,
Small, 2006, 2, 723; (b) M. Tan, Z. Ye, G. Wang and J. Yuan,
Chem. Mater., 2004, 16, 2494; (c) J. Choi, A. Burns, R. Williams,
Z. Zhou, A. Flesken-Nikitin, W. Zipfel, U. Wiesner and A. Niktin,
J. Biomed. Opt., 2007, 12, 064007; (d) S. Santra, P. Zhang,
K. Wang, R. Tapec and W. Tan, Anal. Chem., 2001, 73, 4988; (e)
G. G. Condorelli, C. Tudisco, A. Motta, A. Di Mauro, F. Lupo,
of monodisperse size have been evidenced by transmission elec-
tron microscopy.
Subsequently, Ln(DPAE–Si)3 solution (0.01 M) was synthe-
sized by dissolution of DPAE–Si and Ln(NO3)3$6H2O in
anhydrous ethanol (5 mL) with a molar ratio of Ln3+ : DPAE–
Si ¼ 1 : 3 under argon at room temperature and further stirring
for 10 h. Ultimately, the above solution (1.5 mL) was added
into silica nanoparticles (0.060 g) dispersed in anhydrous
ethanol (20 mL) at 80 ꢂC. The mixture was refluxed for 10 h
under argon at this temperature. The core–shell luminescent
nanoparticles were collected by centrifugation at a speed of
3500 rpm for 20 min, washed with acetone several times until
the supernate did not present any lanthanide characteristic
fluorescence under UV irradiation and dried at 60 ꢂC in an
oven for 20 h.
ꢁ
A. Gulino and I. L. Fragala, Eur. J. Inorg. Chem., 2010, 4121; (f)
A. Di Mauro, F. Lupo, A. Gulino and I. L. Fragala, J. Mater.
ꢁ
Chem., 2009, 19, 3507.
€
4 (a) J. C. G. Bunzli and C. Piguet, Chem. Soc. Rev., 2005, 34, 1048; (b)
J. Yu, L. Sun, H. Peng and M. I. J. Stich, J. Mater. Chem., 2010, 20,
6975; (c) C. Andraud and O. Maury, Eur. J. Inorg. Chem., 2009, 4357;
(d) S. Pandya, J. Yu and D. Parker, Dalton Trans., 2006, 2757.
5 E. G. Moore, A. P. S. Samuel and K. N. Raymond, Acc. Chem. Res.,
2009, 42, 542.
6 (a) X. Guo, H. Guo, L. Fu, H. Zhang, L. D. Carlos, R. Deng and
J. Yu, J. Photochem. Photobiol., A, 2008, 200, 318; (b)
K. Binnemans, Chem. Rev., 2009, 109, 4283.
7 (a) J. Hovinen and P. M. Guy, Bioconjugate Chem., 2009, 20, 404; (b)
S. Poupart, C. Boudou, P. Peixoto, M. Massonneau, P.-Y. Renard
and A. Romieu, Org. Biomol. Chem., 2006, 4, 4165; (c)
A.-C. Franville, D. Zambon, R. Mahiou and Y. Troin, Chem.
Mater., 2000, 12, 428; (d) A. Picot, A. D’Aleo, P. L. Baldeck,
A. Grichine, A. Duperray, C. Andraud and O. Maury, J. Am.
Chem. Soc., 2008, 130, 1532.
Synthesis of core–shell SiO2@Ln(DPAE–Si)3@NH2
nanostructures (Ln ¼ Eu3+ and Tb3+)
To 20 mL of ethanol were added 10 mL of aqueous solution
containing SiO2@Ln–DPAE (0.070 g) and 1.8 mL of
ammonia. The solution was stirred for 30 min at room
temperature. Then APTES (0.15 mL) dispersed in ethanol (20
mL) was added into the above solution and the mixture was
further stirred for 5 h. The white precipitate was isolated by
centrifugation, washed with water and ethanol four times, and
dried at 60 ꢂC for 10 h.
8 (a) Z. El A. Chamas, X. Guo, J.-L. Canet, A. Gautier, D. Boyer and
R. Mahiou, Dalton Trans., 2010, 39, 7091; (b) O. Wallac and
J. Hovinen, WO/2008/025886, 2008; (c) C. S. Bonnet, F. Buron,
ꢀ
F. Caille, C. M. Shade, B. Drahos, L. Pellegatti, J. Zhang,
S. Villette, L. Helm, C. Pichon, F. Suzenet, S. Petoud and E. Toth,
Chem.–Eur. J., 2012, 18, 1419.
Acknowledgements
9 (a) C. W. Tornøe and M. Meldal, in Peptides: The Wave of the Future,
ed. M. Lebland R. A. Houghten, Kluwer Academic Publishers,
Dordrecht, 2001, p. 263; (b) H. C. Kolb, M. G. Finn and
K. B. Sharpless, Angew. Chem., Int. Ed., 2001, 40, 2004; (c)
Z. P. Demko and K. B. Sharpless, Org. Lett., 2001, 3, 4091.
10 (a) J. Zhang, X. Wang, D. Wu and L. Liu, Chem. Mater., 2009, 21,
4012; (b) H. C. Kolb and K. B. Sharpless, Drug Discovery Today,
2003, 24, 1128; (c) A. Maisonial, P. Serafin, M. Traika,
The authors are grateful to the CICS (Centre Imagerie Cellulaire
ꢀ
Sante) of Clermont-Ferrand for TEM analysis.
Notes and references
1 (a) A. Bhirde, J. Xie, M. Swierczewska and X. Chen, Nanoscale, 2011,
ꢀ
E. Debitton, V. Thery, D. J. Aitken, P. Lemoine, B. Viossat and
ꢀ
3, 142; (b) J. Rosenholm, C. Sahlgren and M. Linden, J. Mater.
Chem., 2010, 20, 2707; (c) J. Yan, M. C. Estevez, J. E. Smith,
A. Gautier, Eur. J. Inorg. Chem., 2008, 298; (d) A. Qin, L. Tang,
J. W. Y. Lam, C. K. W. Jim, Y. Yu, H. Zhao, J. Sun and Z. Tang,
Adv. Funct. Mater., 2009, 19, 1891; (e) D. I. Rozkiewicz,
D. Janczewski, W. Verboom, B. Jan Ravoo and D. N. Reinhoudt,
Angew. Chem., 2006, 118, 5418.
ꢀ
K. Wang, X. He, L. Wang and W. Tan, Nano Today, 2007, 2, 44;
(d) D. Knopp, D. Tang and R. Niessner, Anal. Chim. Acta, 2009,
647, 14; (e) C. Fang and M. Zhang, J. Mater. Chem., 2009, 19,
6258; (f) D. K. Kim and J. Dobson, J. Mater. Chem., 2009, 19,
6294; (g) Y. Pia, A. Burns, J. Kim, U. Wiesner and T. Hyeon, Adv.
Funct. Mater., 2008, 18, 3758.
11 F. J. Arriagada and K. Osseo-Asare, J. Colloid Interface Sci., 1999,
211, 210.
6122 | J. Mater. Chem., 2012, 22, 6117–6122
This journal is ª The Royal Society of Chemistry 2012