ChemBioChem
10.1002/cbic.201900148
COMMUNICATION
In contrast to the hydrolysis of GSL-N
significant amounts of the corresponding nitrile 13 were also
formed during hydrolysis of GSL-BODIPY (Figure 4, B-D) as
confirmed by its molecular mass ion 511 m/z (ESI, [M[13]+Na] ,
see SI, Figure S4 B).
3
and natural GSLs,
Keywords: Glucosinolates • Thioglucosidases • Isothiocyanates
•
Fluorescence labelling • artificial natural product derivatives
+
[
1] F. S. Hanschen, E. Lamy, M. Schreiner, S. Rohn, Angew. Chem.
Int. Ed. 2014, 53, 11430–11450.
Product formation followed Michaelis-Menten kinetics with a K
m
of
1
4
64 ± 47 µM and a Kcat of 2.9 s- (Figure 2), i.e. about tenfold lower
[2]
K. G. Ramawat, J.-M. Mérillon, Eds. , Glucosinolates, Springer,
2017.
3
efficiency than product formation from GSL-N , but still in the
range reported with natural GSLs. When myrosinase-catalyzed
hydrolysis was performed in presence of specifier protein AtNSP3
no significant amounts of the nitrile 13 were formed, instead the
overall hydrolysis was slower (See SI, Figure S5). As a possible
explanation, AtNSP3 might block the binding pocket of
myrosinase without being able to accept the aglycone of GSL-
BODIPY due to its size. Very small amounts of 13 were also
formed in absence of myrosinase (Figure 4, A). This slow auto-
degradative process is currently not fully understood.
[3]
U. Wittstock, B. A. Halkier, Trends Plant Sci. 2002, 7, 263–270.
[
[
[
4]
5]
6]
S. Kopriva, Ed. , Glucosinolates: Advances in Botanical
Research, Academic Press, London, 2016.
O. A. Koroleva, A. Davies, R. Deeken, M. R. Thorpe, A. D.
Tomos, R. Hedrich, Plant Physiol. 2000, 124, 599–608.
R. Kissen, J. T. Rossiter, A. M. Bones, Phytochem. Rev. 2009,
8, 69–86.
[7]
[8]
P. Romero, S. Zaidi, A. K. Dunker, Proc. 13th Int. Congr. Genes,
Gene Fam. Isozymes 2005, 7–13.
In summary, we synthesized the first artificial, fluorescent GSL-
derivative as well as an artificial, azido-functionalized GSL. We
demonstrated their ability to serve as substrate for myrosinase
F. Beran, Y. Pauchet, G. Kunert, M. Reichelt, N. Wielsch, H.
Vogel, A. Reinecke, A. Svato , I. Mewis, D. Schmid, et al., Proc.
Natl. Acad. Sci. 2014, 111, 7349–7354.
and, in case of GSL-N
Therefore, we consider GSL-N
3
, as substrate for specifier proteins.
and GSL-BODIPY suitable
3
[
[
9]
A. M. E. Jones, M. Bridges, A. M. Bones, R. Cole, J. T. Rossiter,
Insect Biochem. Mol. Biol. 2001, 31, 1–5.
probes for tracing GSLs and their metabolism in biological
systems.
10] B. Pontoppidan, B. Akborn, S. Eriksson, J. Meijer, Eur. J.
Biochem. 2001, 268, 1041–1048.
[
[
[
11] U. Wittstock, M. Burow, IUBMB Life 2007, 59, 744–751.
Experimental Section
12] U. Wittstock, M. Burow, The Arabidopsis Book 2010, 8, e0134.
13] D. Eisenschmidt‐Bönn, N. Schneegans, A. Backenköhler, U.
Wittstock, W. Brandt, Plant J. 2019, DOI:10.1111/tpj.14327.
The Experimental Details can be found in the Supporting Information.
[
[
14] R. Kissen, A. M. Bones, J. Biol. Chem. 2009, 284, 12057–12070.
15] M. Burow, A. Losansky, R. Mueller, A. Plock, D. J. Kliebenstein,
Author’s Contributions
U. Wittstock, Plant Physiol. 2009, 149, 561–574.
[
16] J. C. Kuchernig, A. Backenköhler, M. Lübbecke, M. Burow, U.
The research was conceived by P.K.. The manuscript was written
by P.K. with contributions from U.W.. All compounds were
synthesized by C.P.G., and P.K.. Biochemical evaluation of the
compounds was planned by U.W., A.B., and M.S. and conducted
by A.B. and M.S.. / All authors have given approval to the final
version of the manuscript.
Wittstock, Phytochemistry 2011, 72, 1699–1709.
[17] M. Burow, A. Bergner, J. Gershenzon, U. Wittstock, Plant Mol.
Biol. 2007, 63, 49–61.
[18] V. Lambrix, M. Reichelt, T. Mitchell-Olds, D. J. Kliebenstein, J.
Gershenzon, Plant Cell 2001, 13, 2793–2807.
[
19] U. Wittstock, N. Agerbirk, E. J. Stauber, C. E. Olsen, M. Hippler,
T. Mitchell-Olds, J. Gershenzon, H. Vogel, Proc. Natl. Acad. Sci.
U. S. A. 2004, 101, 4859–4864.
[
[
[
20] J. V. Higdon, B. Delage, D. E. Williams, R. H. Dashwood,
Conflict of interests
Pharmacol. Res. 2007, 55, 224–236.
21] J. R. Mays, R. L. W. Roska, S. Sarfaraz, H. Mukhtar, S. R.
There are no conflicts of interests to declare.
Rajski, ChemBioChem 2008, 9, 729–747.
22] E. Elhalem, R. Recio, S. Werner, F. Lieder, J. M. Calderón-
Montanõ, M. López-Lázaro, I. Fernández, N. Khiar, Eur. J. Med.
Chem. 2014, 87, 552–563.
Acknowledgements
[
[
[
[
[
23] L. Romeo, R. Iori, P. Rollin, P. Bramanti, E. Mazzon, Molecules
2018, 23, 624.
This work has been carried out within the framework of the
SMART BIOTECS alliance between the Technische Universität
Braunschweig and the Leibniz Universität Hannover. This
initiative is supported by the Ministry of Science and Culture
24] P. Chan, J. A. Uchizono, Essentials Pharmacol. Anesth. Pain
Med. Crit. Care 2015, 2532, 3–47.
25] J. R. K. Cairns, A. Esen, Cell. Mol. Life Sci. 2010, 67, 3389–
3405.
(
MWK) of Lower Saxony, Germany. P.K. thanks Fonds der
26] S. Y. Amazoe, K. H. Asegawa, H. S. Higemori, Biosc.
Biotechnol. Biochem. 2009, 73, 785–787.
Chemischen Industrie for their financial support. The content of
this work is solely the responsibility of the authors and does not
necessarily represent the official views of the funding agencies.
The authors thank the mass spectrometry unit of the Institute of
Organic Chemistry at the TU Braunschweig, in particular Dr.
Ulrich Papke and Dr. Till Beuerle, for analytical support as well as
Robert Zscherp and Dr. Anna Luisa Klahn for helpful discussion
and proofreading of the manuscript.
27] D. Cerniauskaite, J. Rousseau, A. Sackus, P. Rollin, A.
Tatibouët, European J. Org. Chem. 2011, 2293–2300.
[28] W. Abramski, M. Chmielewski, J. Carbohydr. Chem. 2006, 15,
109–113.
[29] M. S. C. Pedras, Q. H. To, G. Schatte, Chem. Commun. 2016,
5
2, 2505–2508.
[30] M. Mavratzotis, S. Cassel, S. Montaut, P. Rollin, Molecules
018, 23, 1–15.
2
For internal use, please do not delete. Submitted_Manuscript
This article is protected by copyright. All rights reserved.