ORGANIC
LETTERS
2001
Vol. 3, No. 3
373-375
Highly Enantioselective Hydrogenation
of r-Dehydroamino Acids by Rhodium
Complexes with New Unsymmetric
P−Chirogenic Bisphosphine Ligands
Atsushi Ohashi* and Tsuneo Imamoto*
Department of Chemistry, Faculty of Science, Chiba UniVersity,
Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
Received November 15, 2000
ABSTRACT
New rhodium catalysts with unsymmetric P−chirogenic bis(phosphino)ethanes, BisP*−Rh, exhibited very high enantioselectivity (98−99%) in
the hydrogenation of r-dehydroamino acid derivatives. Such high enantioselectivity should result from the asymmetric environment around
the Rh atom, as was shown in the molecular structure of the catalyst analyzed by X-rays. The asymmetry can be controlled by the combination
of the alkyl groups on the two phosphorus atoms.
Optically active phosphine-transition metal complexes have
played an important role in catalytic asymmetric synthesis.1
Since a C2 symmetric bisphosphine ligand, DIOP, showed
high enantioselectivity, it has been considered that C2
symmetric bisphosphine ligands are endowed with superior
catalytic properties.2 The C2 symmetric ligands such as
DIPAMP,3 BINAP,4 DuPHOS,5 BIPNOR,6 and PennPHOS7
have exhibited high enantioselectivity over a broad range.
On the other hand, it has been shown that unsymmetric
bisphosphine ligands,8 which have different groups on the
two phosphorus atoms, have also been shown to be effective
in some cases of asymmetric hydrogenation. However, an
unsymmetric bis(trialkylphosphine) ligand has not yet been
reported. We also reported previously that (S,S)-1,2-bis-
(alkylmethylphosphino)ethane (alkyl ) 1-adamantyl, tert-
butyl, cyclohexyl, cyclopentyl, 1,1-diethylpropyl; abbreviated
as BisP*) effected highly enantioselective hydrogenation of
R-dehydroamino acids.9
(1) Reviews: (a) Ojima, I., Ed. Catalytic Asymmetric Synthesis, 2nd ed.;
VCH publishers: Wheinheim, 2000. (b) Noyori, R. Asymmetric Catalysis
in Organic Synthesis; Wiley & Sons: New York, 1994. (c) Hayashi, T.;
Tomioka, K.; Yonemitsu, O. Asymmetric Synthesis; Kodansha: Tokyo,
1998. (d) Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H. ComprehensiVe
Asymmetric Catalysis; Springer: Berlin, 1999. (e) Kagan, H. B. Asymmetric
Synthesis; Morrison, J. D., Ed.; Academic Press: Orlando, 1985; Vol. 5,
Chapter 1.
(2) Kagan, H. B.; Dang, T.-P. J. Am. Chem. Soc. 1972, 94, 6429.
(3) Vineyard, B. D.; Knowles, W. S.; Sabacky, M. J.; Bachman, G. L.;
Weinkauff, D. J. J. Am. Chem. Soc. 1977, 99, 5946.
(4) Miyashita, A.; Yasuda, A.; Takaya, H.; Toriumi, K.; Ito, T.; Souchi,
T.; Noyori, R. J. Am. Chem. Soc. 1980, 102, 7932.
(7) Jiang, Q.; Jiang, Y.; Xiao, D.; Cao, P.; Zhang, X. Angew. Chem.,
Int. Ed. 1998, 37, 1100.
(8) (a) Yoshikawa, K.; Yamamoto, N.; Murata, M.; Awano, K.;
Morimoto, T.; Achiwa, K. Tetrahedron; Asymmetry 1992, 3, 13. (b) Togni,
A.; Breutel, C.; Schnyder, A.; Spindler, F.; Landert, H.; Tijani, A. J. Am.
Chem. Soc. 1994, 116, 4062. (c) Carmichael, D.; Doucet H.; Brown, J. M.
Chem. Commun. 1999, 261.
(9) Imamoto, T.; Watanabe, J.; Wada, Y.; Masuda, H.; Yamada, H.;
Tsuruta, H.; Matsukawa, S.; Yamaguchi, K. J. Am. Chem. Soc. 1998, 120,
1635.
(5) (a) Burk, M. J. J. Am. Chem. Soc. 1991, 113, 8518. (b) Burk, M. J.
Angew. Chem., Int. Ed. 1998, 37, 1931.
(6) Robin, F.; Mercier, F.; Richard, L.; Mathey, F.; Spagnol, M. Chem.
Eur. J. 1997, 3, 1365.
10.1021/ol006876s CCC: $20.00 © 2001 American Chemical Society
Published on Web 01/11/2001