B. Lygo et al. / Tetrahedron Letters 43 (2002) 8015–8018
8017
Crosby, J.; Peterson, J. A. Tetrahedron Lett. 1999, 40,
671; (f) Lygo, B.; Crosby, J.; Lowdon, T. R.; Wain-
8
wright, P. G. Tetrahedron 2001, 57, 2391; (g) Lygo, B.;
Crosby, J.; Lowdon, T. R.; Peterson, J. A.; Wainwright,
P. G. Tetrahedron 2001, 57, 2403; (h) Lygo, B.; Crosby,
J.; Peterson, J. A. Tetrahedron 2001, 57, 6447; (i) Lygo,
B.; Humphreys, L. D. Tetrahedron Lett. 2001, 43, 6677;
(
j) Ma, D.; Zhang, T.; Wang, G.; Kozikowski, A. P.;
Lewin, N. E.; Blumberg, P. M. Bioorg. Med. Chem. Lett.
001, 11, 99.
. (a) Corey, E. J.; Xu, F.; Noe, M. C. J. Am. Chem. Soc.
997, 119, 12414; (b) Corey, E. J.; Noe, M. C.; Xu, F.
Tetrahedron Lett. 1998, 39, 5347; (c) Horikawa, M.;
Busch-Petersen, J.; Corey, E. J. Tetrahedron Lett. 1999,
40, 3843; (d) Boisnard, S.; Carbonnelle, A.-C.; Zhu, J.
Org. Lett. 2001, 3, 2061; (e) Jotterand, N.; Pearce, D. A.;
Imperiali, B. J. Am. Chem. Soc. 2001, 66, 3224; (f) Chen,
G.; Deng, Y.; Gong, L.; Mi, A.; Cui, X.; Jiang, Y.; Choi,
M. C. K.; Chan, A. S. C. Tetrahedron: Asymmetry 2001,
12, 1567.
2
3
1
Scheme 5.
quaternary ammonium salt 1 (R=Bn, X=Br) was
identified as the most effective catalyst for this transfor-
mation, generating the desired imine 8 in 92% e.e.
14
The results shown in Fig. 1 also demonstrate that both
N- and O-substituents in the catalyst can play a signifi-
cant role in determining the level of enantioselectivity.
This highlights the need to vary both of these sub-
stituents when search for optimal catalysts, and empha-
sizes the utility of the methodology described here.
4. Okino, T.; Takemoto, Y. Org. Lett. 2001, 3, 1515.
5. (a) O’Donnell, M. J.; Delgado, F.; Hostettler, C.;
Schwesinger, R. Tetrahedron Lett. 1998, 39, 8775; (b)
O’Donnell, M. J.; Delgado, F.; Pottorf, R. S. Tetrahedron
1
999, 55, 6347; (c) O’Donnell, M. J.; Delgado, F.;
It is also worth noting that the above reactions were
performed at ambient temperature (25–30°C) simply for
convenience. If required, it is usually possible to
increase the level of enantioselectivity simply by reduc-
ing the reaction temperature. For example, by using the
optimal catalyst 1 (R=Bn, X=Br) identified in Fig. 1,
Dominguez, E.; de Blas, J.; Scott, W. L. Tetrahedron:
Asymmetry 2001, 12, 821.
6. See for example: (a) Corey, E. J.; Bo, Y.; Busch-Petersen,
J. J. Am. Chem. Soc. 1998, 120, 13000; (b) Zhang, F.-Y.;
Corey, E. J. Org. Lett. 2000, 2, 1097; (c) Perrard, T.;
Plaquevent, J.-C.; Desmurs, J.-R.; H e´ brault, D. Org.
Lett. 2000, 2, 2959; (d) Zhang, F.-Y.; Corey, E. J. Org.
Lett. 2001, 3, 639.
15
and reducing the reaction temperature to 0°C, imine 8
can be generated in 98% e.e. (Scheme 5).
7
. (a) Lygo, B.; Wainwright, P. G. Tetrahedron Lett. 1998,
39, 1599; (b) Lygo, B.; Wainwright, P. G. Tetrahedron
1999, 55, 6289; (c) Lygo, B.; To, D. C. M. Tetrahedron
Lett. 2001, 42, 1343.
In conclusion, this study has demonstrated that cin-
chona alkaloid-derived quaternary ammonium salts can
be generated in situ during the liquid–liquid phase-
transfer alkylation of glycine imine 2, and that this
protocol results in enantioselectivities similar to those
obtained with pre-prepared catalysts. We believe that
his chemistry is likely to be particularly useful for the
identification of optimal catalysts structures for a given
transformation, and that this approach should be appli-
cable to a wide variety of phase-transfer reaction
processes.
8. See for example: (a) Hughes, D. L.; Dolling, U.-H.;
Ryan, K. M.; Schoenewaldt, E. F.; Grabowski, E. J. J. J.
Org. Chem. 1987, 52, 4745; (b) Arai, S.; Tsuge, H.;
Shioiri, T. Tetrahedron Lett. 1998, 39, 7563; (c) Jew, S. S.;
Jeong, B. S.; Yoo, M. S.; Huh, H.; Park, H. G. Chem.
Commun. 2001, 1244; (d) Park, H. G.; Jeong, B. S.; Yoo,
M. S.; Park, M. K.; Huh, H.; Jew, S. S. Tetrahedron Lett.
2001, 42, 4645; (e) Thierry, B.; Plaquevent, J. C.; Cahard,
D. Tetrahedron: Asymmetry 2001, 12, 983.
9. O’Donnell, M. J.; Wu, S.; Huffman, J. C. Tetrahedron
Acknowledgements
1994, 50, 4507.
0. Fernandez, M.-J.; Gude, L.; Lorente, A. Tetrahedron
1
Lett. 2001, 42, 891.
We thank the EPSRC for funding and AstraZeneca for
a studentship (to J.A.P.).
11. For applications of anthracenylmethyl glycine deriva-
tives, see: (a) Nestor, J. J.; Ho, T. L.; Simpson, R. A.;
Horner, B. L.; Jones, G. H.; McRae, G. I.; Vickery, B. H.
J. Med. Chem. 1982, 25, 795; (b) Hohsaka, T.; Kajihara,
D.; Ashizuka, Y.; Murakami, H.; Sisido, M. J. Am.
Chem. Soc. 1999, 121, 34.
References
1
. For an authoritative review of glycine imine chemistry,
see: O’Donnell, M. J. Aldrichim. Acta 2001, 34, 1.
. (a) Lygo, B.; Wainwright, P. G. Tetrahedron Lett. 1997,
12. Sufficent dichloromethane was added so as to give a final
toluene:dichloromethane ratio of 7:3. This solvent ratio
has previously been reported to be optimal for alkyla-
tions of this type, see: Esikova, I. A.; Nahreini, T. S.;
O’Donnell, M. J. In ACS Symposium Series 659: Phase-
Transfer Catalysis—Mechanisms and Syntheses; Halpern,
M. E., Ed.; ACS: Washington, DC, 1997; p. 89.
2
3
8, 8595; (b) Dehmlow, E. V.; Wagner, S.; M u¨ ller, A.
Tetrahedron 1999, 55, 6335; (c) Lygo, B.; Crosby, J.;
Peterson, J. A. Tetrahedron Lett. 1999, 40, 1385; (d)
Lygo, B. Tetrahedron Lett. 1999, 40, 1389; (e) Lygo, B.;