synthesis. They also provide the key functional subunits
for rational drug designs. Cyclopropanated carbohy-
drates, the combination of cyclopropanes and carbohy-
drates within a single molecule, have also been widely used
there have been no reported cycloaddition reactions of
cyclopropanated carbohydrates under catalysis condi-
tions until this report.
Given the important role of the substituted perhydro-
furo[2,3-b]pyrans (and bis-THFs), the lack of utility of
cyclopropanated carbohydrates in both Lewis acid and
transition metal catalyzed cycloadditions, and as part of
our continuing interest in the synthesis of carbohydrate
1
0
11,12
to synthesize branched glycosides, oxepanes,
some other natural products or carbohydrate-based fused
and
1
3
ring compounds. The [3 þ n] cycloaddition of 1,2-cyclo-
propanated sugar, which would be an efficient method to
synthesize carbohydrate-based carbo- and heterocyclic
4
c,10c,10d,14
analogues,
we disclose herein our results on an
6b,10b
compounds, however, still remains almost unknown.
In 2003, excellent work was reported by Pagenkopf and
InCl catalyzed [3 þ 2] cycloaddition of cyclopropanated
3
15,16
sugars and aldehydes.
This reaction offers a mild,
1
3
co-workers, which involved the [3 þ 2] cycloaddition of
carbohydrate-based cyclopropanated ester with nitriles.
This method offered densely functionalized 3,4-dihydro-
efficient method to generate multisubstituted perhydrofuro-
[2,3-b]pyrans (and bis-THFs) in high yield with excellent
diastereoselectivity (Scheme 1). To our knowledge, this is
the first successful example that utilizes the [3 þ 2] cycload-
dition between cyclopropanes and CdX (X = C, N, O)
compounds to synthesize multisubstituted perhydrofuro-
2H-pyrroles in high stereoselectivity; however, stoichiometric
TMSOTf was required. To the best of our knowledge,
[
2,3-b]pyrans and bis-THFs.
(
7) For some recent publications involving aldehydes, see: (a) Xing,
S.-Y.; Pan, W.-Y.; Liu, C.; Ren, J.; Wang, Z.-W. Angew. Chem., Int. Ed.
010, 49, 3215. (b) Pohlhaus, P. D.; Sanders, S. D.; Parsons, A. T.; Li,
2
W.; Johnson, J. S. J. Am. Chem. Soc. 2008, 130, 8642. (c) Parsons, A. T.;
Johnson, J. S. J. Am. Chem. Soc. 2009, 131, 3122. (d) Pohlhaus, P. D.;
Johnson, J. S. J. Am. Chem. Soc. 2005, 127, 16014. (e) Schneider, T. F.;
Kaschel, J.; Dittrich, B.; Werz, D. B. Org. Lett. 2009, 11, 2317. (f) Brand,
C.; Rauch, G.; Zanoni, M.; Dittrich, B.; Werz, D. B. J. Org. Chem. 2009,
Scheme 1. Lewis Acid (LA) Catalyzed Cycloaddition Reaction
of 1,2-Cyclopropanated Sugars with Aldehydes
7
1
4, 8779. (g) Smith, A. G.; Slade, M. C.; Johnson, J. S. Org. Lett. 2011,
3, 1996. (h) Campbell, M. J.; Johnson, J. S.; Parsons, A. T.; Pohlhaus,
P. D.; Sanders, S. D. J. Org. Chem. 2010, 75, 6317. (i) Parsons, A. T.;
Campbell, M. J.; Johnson, J. S. Org. Lett. 2008, 10, 2541. (j) Yang, G.-S.;
Shen, Y.; Li, K.; Sun, Y.-X.; Hua, Y.-Y. J. Org. Chem. 2011, 76, 229. (k)
Xing, S.-Y.; Li, Y.; Li, Z.; Liu, C.; Ren, J.; Wang, Z.-W. Angew. Chem.,
Int. Ed. 2011, 50, 12605. (l) Benfatti, F.; de Nanteuil, F.; Waser, J. Org.
Lett. 2012, 14, 386. (m) Bai, Y.; Tao, W.-J.; Ren, J.; Wang, Z.-W. Angew.
Chem., Int. Ed. 2012, 51, 4112. (n) Haubenreisser, S.; Hensenne, P.;
Schr o€ der, S.; Niggemann, M. Org. Lett. 2013, 15, 2262.
Our preliminary investigation focused on the cycloaddi-
tion reaction of cyclopropanated sugar (1a) and benzalde-
hyde (2a). Afterseveral parameterswere screened (Table S1,
Supporting Information), the product 3aa was obtained
in 86% isolated yield (dr = 18:1) in the presence of 20 mol %
(8) For the reactions between cyclopropanes and ketones, see: (a)
Martins, E. O.; Gleason, J. L. Org. Lett. 1999, 1, 1643. (b) Sugita, Y.;
Kawai, K.; Yokoe, I. Heterocycles 2000, 53, 657. (c) Shi, M.; Xu, B.
Tetrahedron Lett. 2003, 44, 3839. (d) Gupta, A.; Yadav, V. K. Tetra-
hedron Lett. 2006, 47, 8043. (e) Benfatti, F.; de Nanteuil, F.; Waser, J.
Chem.;Eur. J. 2012, 18, 4844.
InCl in toluene at 0ꢀ4 °C for 2 h. Subsequently, to
3
investigate the generality of this reaction, under the
optimized reaction conditions, the influence of various
substituents on the phenyl ring was first studied (Table 1).
The results indicated that the stereoselectivity of the [3 þ 2]
cycloaddition was not very sensitive to the electron density
of the phenyl ring. Both electron-donating (Table 1, entry 2)
and electron-withdrawing groups (Table 1, entries 4ꢀ11)
provided good results. A strong electron-withdrawing
group (Table 1, entries 8ꢀ11) also provided cycloaddition
products in high diastereoselectivity but induced a significant
variation in yield. The position of substituents on the phenyl
ring also had a negligible effect on the diastereoselectivity
(3ad and 3ag vs 3ah; 3ak vs 3al). Then, heteroaromatic
aldehydes were subjected to the [3 þ 2] cycloaddition with
cyclopropanated sugar 1a, and it was found that 2-furalde-
hyde and 2-thenaldehyde furnished the perhydrofuro[2,3-b]-
pyrans in high yield with excellent stereoselectivity
(Table 1, entries 12, 13); however, 2-pyridylaldehyde did
not achieve the conversion (Table 1, entry 16). In addition,
(
9) For examples using [3
þ
2] cycloaddition to synthesize
tetrahydrofuro[2,3-b][1]benzonpyranones, see: Sugita, Y.; Kawai, K.;
Yokoe, I. Heterocycles 2001, 55, 135 and ref 8b.
(10) For reviews, see: (a) Yin, J.; Linker, T. Org. Biomol. Chem. 2012,
1
1
0, 2351. (b) Cousins, G. S.; Hoberg, J. O. Chem. Soc. Rev. 2000, 29,
65and ref 6b. Some other examples: (c) Tian, Q.; Dong, L.; Ma, X.-F.;
Xu, L.-Y.; Hu, C.-W.; Zou, W.; Shao, H.-W. J. Org. Chem. 2011, 76,
045. (d) Tian, Q.; Xu, L.-Y.; Ma, X.-F.; Zou, W.; Shao, H.-W. Org.
Lett. 2010, 12, 540. (e) Sridhar, P. R.; Kumar, P. V.; Seshadri, K.;
Satyavathi, R. Chem.;Eur. J. 2009, 15, 7526. (f) Beyer, J.; Skaanderup,
P. R.; Madsen, R. J. Am. Chem. Soc. 2000, 122, 9575. (g) Beyer, J.;
Madsen, R. J. Am. Chem. Soc. 1998, 120, 12137.
1
(
11) (a) Hewitt, R. J.; Harvey, J. E. J. Org. Chem. 2010, 75, 955. (b)
Ganesh, N. V.; Raghothama, S.; Sonti, R.; Jayaraman, N. J. Org. Chem.
010, 75, 215. (c) Ganesh, N. V.; Jayaraman, N. J. Org. Chem. 2009, 74,
39. (d) Batchelor, R.; Harvey, J. E.; Northcote, P. T.; Teesdale-Spittle,
P.; Hoberg, J. O. J. Org. Chem. 2009, 74, 7627. (e) Ganesh, N. V.;
Jayaraman, N. J. Org. Chem. 2007, 72, 5500.
2
7
(12) (a) Hoberg, J. O.; Bozell, J. Tetrahedron Lett. 1995, 36, 6831. (b)
Hoberg, J. O. J. Org. Chem. 1997, 62, 6615. (c) Batchelor, R.; Hoberg,
J. O. Tetrahedron Lett. 2003, 44, 9043.
(13) Yu, M.; Pagenkopf, B. L. J. Am. Chem. Soc. 2003, 125, 8122.
(14) (a) Ma, X.-F.; Tang, Q.; Ke, J.; Wang, H.-B.; Zou, W.; Shao,
H.-W. Carbohydr. Res. 2013, 366, 55. (b) Wang, H.-B.; Luo, H.-R.; Ma,
X.-F.; Zou, W.; Shao, H.-W. Eur. J. Org. Chem. 2011, 4834. (c) Shao,
H.-W.; Wang, Z.-R.; Lacroix, E.; Wu, S. H.; Jennings, H. J.; Zou, W.
J. Am. Chem. Soc. 2002, 124, 2130. (d) Shao, H.-W.; Ekthawatchai, S.;
Wu, S. H.; Zou, W. Org. Lett. 2004, 6, 3497. (e) Shao, H.-W.; Ektha-
watchai, S.; Chen, C. S.; Wu, S. H.; Zou, W. J. Org. Chem. 2005, 70,
3
(15) For selected recent reviews on InCl , see: (a) Auge, J.; Lubin-
Germain, N.; Uziel, J. Synthesis 2007, 1739. (b) Yadav, J. S.; Antony, A.;
George, J.; Subba Reddy, B. V. Eur. J. Org. Chem. 2010, 591.
4
726. (f) Wang, Z.; Shao, H.-W.; Lacroix, E.; Wu, S. H.; Jennings, H. J.;
Zou, W. J. Org. Chem. 2003, 68, 8097. (g) Zhao, J.-Z.; Wei, S.-Q.; Ma,
X.-F.; Shao, H.-W. Green Chem. 2009, 11, 1124. (h) Zhao, J.-Z.; Wei,
S.-Q.; Ma, X.-F.; Shao, H.-W. Carbohydr. Res. 2010, 345, 168. (i) Luo,
H.-R.; Zou, W.; Shao, H.-W. Carbohydr. Res. 2009, 344, 2454.
3
(16) For the cycloaddition involved in InCl , see: (a) Yadav, J. S.;
Subba Reddy, B. V.; Rao, R. S.; Kumar, S. K.; Kunwar, A. C. Tetra-
hedron 2002, 58, 7891. (b) Yadav, J. S.; Subba Reddy, B. V.; Kondaji, G.
Synthesis 2003, 1100.
B
Org. Lett., Vol. XX, No. XX, XXXX