dichloromethane (3 × 50 ml) and the combined organic extracts
were dried and concentrated in vacuo. The residue was purified by
flash column chromatography, (10% Et2O, 90% petrol) to give a 2 :
1 mixture of diastereoisomers of the phenol 77c (23 mg, 48%) as a
viscous liquid solid. Crystallisation from diethyl ether and pentane
gave the major diastereoisomer as colourless crystals, mp 195–
196 ◦C; mmax(sol CHCl3)/cm−1, 3597, 1693, 1608; dH (400 MHz,
CDCl3) (major diastereoisomer) 1.39 (3H, s, CH3), 1.46–1.62 (3H,
m), 1.69–1.85 (3H, m), 2.01–2.20 (3H, m), 2.63 (1H, app td, J 15.5
and 3.5 Hz, ArCHaHb), 2.85 (1H, app dt, J 15.5 and 3.0 Hz,
21.5 (t), 23.4 (t), 24.8 (t), 27.0 (q), 31.1 (t), 36.2 (d), 37.0 (t),
43.4 (s), 44.3 (d), 51.2 (d), 55.2 (q), 112.3 (d), 113.3 (d), 119.0 (t),
128.3 (d), 128.6 (s), 140.9 (s), 148.5 (s), 157.4 (s), 205.2 (s); (minor
diastereoisomer) 21.8 (t), 22.3 (t), 24.4 (q), 25.9 (t), 29.1 (t), 40.1
(s), 41.7 (d), 44.7 (t), 46.1 (d), 46.5 (d), 55.3 (q), 110.6 (d), 114.4 (d),
119.7 (t), 127.8 (d), 131.6 (s), 138.7 (s), 146.2 (s), 158.0 (s), 205.3
(s); m/z (ES) 319.1669 (M + Na+, C20H24O2Na requires 319.1674).
Acknowledgements
=
ArCHaHb), 3.19 (1H, app d, J 10.0 Hz, O CCH), 3.31 (1H, dd, J
10.0 and 3.0 Hz, ArCH), 4.71 (1H, br s, OH), 6.62 (1H, d, J 2.5 Hz,
HOCCHC), 6.66 (1H, dd, J 8.5 and 2.5 Hz, HOCCHCH), 6.89
We thank the EPSRC for postgraduate studentships (to DAS and
NMT), and AstraZeneca and Pfizer Ltd for financial support.
We also thank Dr A. J. Blake for X-ray crystal structure
determinations, and Philip Jones and L. Krishnakanath Reddy
for their earlier contributions to this project.
=
(1H, s, PhCH ), 7.11 (1H, d, J 8.5 Hz, HOCCHCH), 7.27–7.36
(3H, m, 3 × PhH), 7.42 (2H, app d, J 7.5 Hz, 2 × PhH); (minor
diastereoisomer) 1.26 (3H, s, CH3), 1.47–1.81 (6H, m), 1.95–2.13
=
(3H, m), 2.79 (1H, app d, J 10.0 Hz, O CCH), 2.93–2.99 (2H,
m, ArCH2), 3.30 (1H, dd, J 10.0 and 2.0 Hz, ArCH), 5.25 (1H,
References
br s, OH), 6.59 (1H, d, J 2.5 Hz, HOCCHC), 6.65 (1H, dd, J 8.5
1 See, for example: F. Marion, J. Coulomb, A. Servais, C. Courillon,
C. Fensterbank and M. Malacria, Tetrahedron, 2006, 62, 3856–3871;
E. Moman, D. Nicoletti and A. Mourino, Org. Lett., 2006, 8, 1249–
1251; H.-Y. Lee, D. K. Moon and J. S. Bahn, Tetrahedron Lett., 2005,
46, 1455–1458; V. Rosales, J. Zambrano and M. Demuth, Eur. J. Org.
Chem., 2004, 8, 1798–1802; D. Yang, S. Gu, Y.-L. Yan, H.-W. Zhao
and N.-Y. Zhu, Angew. Chem., Int. Ed., 2002, 41, 3014–3017; A. J.
McCarroll and J. C. Walton, Angew. Chem., Int. Ed., 2001, 40, 2224–
2248, and references cited therein.
2 B. De Boeck, N. M. Harrington-Frost and G. Pattenden, Org. Biomol.
Chem., 2005, 3, 340–347; H. M. Boehm, S. Handa, G. Pattenden, L.
Roberts, A. Blake and W.-S. Li, J. Chem. Soc., Perkin Trans. 1, 2000,
3522–3538; S. Handa, P. S. Nair and G. Pattenden, Helv. Chim. Acta,
2000, 83, 2629–2643.
3 S. A. Hitchcock, S. J. Houldsworth, G. Pattenden, D. C. Pryde, N. M.
Thomson and A. J. Blake, J. Chem. Soc., Perkin Trans. 1, 1998, 3181–
3206.
4 G. Pattenden, M. A. Gonzalez, S. McCulloch, A. Walter and S. J.
Woodhead, Proc. Natl. Acad. Sci. U. S. A., 2004, 101, 12024–12029.
5 For some other examples of the use of ynone electrophores in synthesis,
see: J. E. Baldwin, R. M. Adlington and S. Ramcharitar, Tetrahedron,
1992, 48, 3413–3428; U. Wille and C. Jargstorff, J. Chem. Soc., Perkin
Trans. 1, 2002, 1036–1041; C. Spino and N. Barriault, J. Org. Chem.,
1999, 64, 5292–5298.
=
and 2.5 Hz, HOCCHCH), 6.71 (1H, s, PhCH ), 6.92 (1H, d, J
8.5 Hz, HOCCHCH), 7.25–7.39 (5H, m, 5 × PhH); dC (100 MHz,
CDCl3) (major diastereoisomer) 21.4 (t), 24.7 (t), 24.9 (t), 27.6 (q),
31.0 (t), 36.1 (d), 37.0 (t), 43.5 (s), 45.7 (d), 52.6 (d), 113.7 (d),
114.8 (d), 127.8 (2C d), 127.9 (d), 128.7 (d), 128.8 (s), 129.0 (2C d),
135.4 (d), 137.0 (s), 141.0 (s), 144.0 (s), 153.3 (s), 205.9 (s); (minor
diastereoisomer) 21.8 (t), 23.8 (t), 24.3 (q), 25.9 (t), 28.9 (t), 40.7
(s), 43.0 (d), 46.0 (t), 46.8 (d), 47.3 (d), 112.3 (d), 115.7 (d), 127.7
(s), 127.8 (2C d), 128.0 (d), 128.7 (d), 128.9 (2C d), 135.3 (d), 138.1
(s), 139.3 (s), 144.5 (s), 154.1 (s), 206.7 (s); m/z (ES) 359.1999 (M
+ H+, C25H27O2 requires 359.2006).
Methylidene substituted methoxy bridged tricycle 82. A so-
lution of tri-n-butyltin hydride (107 ll, 0.40 mmol) and 2,2ꢀ-
azobis(isobutyronitrile) (6 mg, 0.04 mmol) in degassed heptane
(14 ml), was added dropwise over 8 h via syringe pump, to a
stirred solution of the iodide 72b (140 mg, 0.33 mmol) and 2,2ꢀ-
azobis(isobutyronitrile) (35 mg, 0.21 mmol) in degassed heptane
◦
6 For example: E. J. Corey and S. Lin, J. Am. Chem. Soc., 1996, 118,
8765–8766; P. V. Fish, W. S. Johnson, G. S. Jones, F. S. Tham and R. K.
Kullnig, J. Org. Chem., 1994, 59, 6150–6152; E. E. van Tamelen, R. A.
Holton, R. E. Hopla and W. E. Konz, J. Am. Chem. Soc., 1972, 94,
8228–8229.
(140 ml), at 90 C under an argon atmosphere. The mixture was
heated under reflux for a further 12 h, then allowed to cool to room
temperature and concentrated in vacuo. The residue was purified
by flash column chromatography on silica (2–10% Et2O, 98–90%
petrol) to give the bridged tricyclic ketone 82 (18 mg, 18%) as
an inseparable mixture of diastereoisomers in a 2 : 1 ratio, as a
colourless oil, mmax(sol CHCl3)/cm−1, 1695, 1611; dH (400 MHz,
CDCl3), (major diastereoisomer) 1.31 (3H, s, CH3), 1.50–1.83
(6H, m), 1.98–2.14 (3H, m), 2.62 (1H, app td, J 14.5 and 3.0 Hz,
ArCHaHb), 2.86 (1H, app dt, J 14.5 and 3.5 Hz, ArCHaHb), 3.21
7 For example: R. L. Funk and K. P. C. Vollhardt, J. Am. Chem. Soc.,
1980, 102, 5253–5261; P. A. Grieco, T. Takigawa and W. J. Schillinger,
J. Org. Chem., 1980, 45, 2247–2251; P.-Y. Michellys, H. Pellisier and M.
Santelli, Tetrahedron Lett., 1993, 34, 1931–1934; R. Lavoie, A. Toro and
P. Deslongchamps, Tetrahedron, 1999, 55, 13037–13050; T. Sugahara
and K. Ogasawara, Tetrahedron Lett., 1996, 37, 7403–7406.
8 For example: S. H. Lecker, N. H. Nguyen and K. P. C. Vollhardt,
J. Am. Chem. Soc., 1986, 108, 856–858; T. Sugihara, C. Coperet, Z.
Owczarczyk, L. S. Harding and E. Negishi, J. Am. Chem. Soc., 1994,
116, 7923–7924; B. M. Trost and Y. Shi, J. Am. Chem. Soc., 1993, 115,
9421–9438; K. P. C. Vollhardt, Pure Appl. Chem., 1985, 57, 1819–1826.
9 For example: P. A. Zoretic and H. Fang, J. Org. Chem., 1998, 63, 7213–
7217; T. Takahashi, S. Tomida, Y. Sakamoto and H. Yamada, J. Org.
Chem., 1997, 62, 1912–1913; U. Jahn and D. Curran, Tetrahedron Lett.,
1995, 36, 8921–8924; C. Heinemann and M. Demuth, J. Am. Chem.
Soc., 1999, 121, 4894–4895.
10 See ref. 2 and 4; A. Batsanov, L. Chen, G. B. Gill and G. Pattenden,
J. Chem. Soc., Perkin Trans. 1, 1996, 45–55; G. Pattenden and P.
Weidenau, Tetrahedron Lett., 1997, 38, 3647–3650; S. Handa, G.
Pattenden and W.-S. Li, Chem. Commun., 1998, 311–312.
11 See: L. Ouellet, P. Langois and P. Deslongchamps, Synlett, 1997, 689–
690; P. Deslongchamps, Pure Appl. Chem., 1992, 64, 1831–1847; F.
Caussanel, P. Deslongchamps and Y. L. Dory, Org. Lett., 2003, 5,
=
(1H, app dd, J 9.0 and 3.0 Hz, and 2.5 Hz, O CCH), 3.32 (1H,
dd, J 10.5 and 3.0 Hz, ArCH), 3.79 (3H, s, OCH3), 5.43 (1H,
=
=
d, J 1.0 Hz, CHaHb), 6.23 (1H, d, J 1.0 Hz, CHaHb), 6.69
(1H, d, J 2.5 Hz, CH3OCCHC), 6.75 (1H, dd, J 8.5 and 2.5 Hz,
CH3OCCHCH), 7.16 (1H, d, J 8.5 Hz, CH3OCCHCH); (minor
diastereoisomer) 1.20 (3H, s, CH3), 1.55–1.95 (6H, m), 1.98–2.18
=
(3H, m), 2.52 (1H, app d, J 9.0 Hz, O CCH), 2.95 (2H, app t,
J 8.5 Hz, ArCH2), 3.26 (1H, dd, J 9.0 and 1.5 Hz, ArCH), 3.78
=
(3H, s, OCH3), 5.33 (1H, d, J 1.0 Hz, CHaHb), 6.19 (1H, d,
=
J 1.0 Hz, CHaHb), 6.68 (1H, d, J 3.0 Hz, CH3OCCHC), 6.76
(1H, dd, J 8.0 and 3.0 Hz, CH3OCCHCH), 6.98 (1H, d, J 8.0 Hz,
CH3OCCHCH); dC (100 MHz, CDCl3) (major diastereoisomer)
This journal is
The Royal Society of Chemistry 2007
Org. Biomol. Chem., 2007, 5, 1776–1788 | 1787
©