724ꢀ
XiaosuꢀDongꢀetꢀal.ꢀ/ꢀChineseꢀJournalꢀofꢀCatalysisꢀ38ꢀ(2017)ꢀ717–725ꢀ
tectableꢀonꢀtheꢀsurfaceꢀofꢀtheꢀprecursor.ꢀTheꢀcalcinationꢀtem‐
peratureꢀ hadꢀ aꢀ significantꢀ impactꢀ onꢀ theꢀ physicochemicalꢀ
properties.ꢀ Withꢀ increasingꢀ temperature,ꢀ theꢀ specificꢀ surfaceꢀ
areaꢀasꢀwellꢀasꢀtheꢀamountꢀofꢀbasicꢀsitesꢀdecreasedꢀwhileꢀtheꢀCuꢀ
particleꢀsizeꢀincreased,ꢀdueꢀtoꢀhigherꢀratesꢀofꢀCuꢀaggregation.ꢀ
Furthermore,ꢀcalcinationꢀtemperatureꢀwasꢀfoundꢀtoꢀaffectꢀtheꢀ
surfaceꢀdistributionꢀandꢀinteractionꢀofꢀCuꢀspecies,ꢀthusꢀleadingꢀ
[11] B.ꢀJ.ꢀLiaw,ꢀY.ꢀZ.ꢀChen,ꢀAppl.ꢀCatal.ꢀA,ꢀ2001,ꢀ206,ꢀ245−256.ꢀ
[
[
[
12] X.ꢀS.ꢀDong,ꢀF.ꢀLi,ꢀN.ꢀZhao,ꢀF.ꢀK.ꢀXiao,ꢀJ.ꢀW.ꢀWang,ꢀY.ꢀS.ꢀTan,ꢀAppl.ꢀCatal.ꢀ
B,ꢀ2016,ꢀ191,ꢀ8−17.ꢀ
13] Y.ꢀTanaka,ꢀT.ꢀUtaka,ꢀR.ꢀKikuchi,ꢀT.ꢀTakeguchi,ꢀK.ꢀSasaki,ꢀK.ꢀEguchi,ꢀJ.ꢀ
Catal.,ꢀ2003,ꢀ215,ꢀ271−278.ꢀ
14] C.ꢀR.ꢀJung,ꢀJ.ꢀHan,ꢀS.ꢀW.ꢀNam,ꢀT.ꢀH.ꢀLim,ꢀS.ꢀA.ꢀHong,ꢀH.ꢀI.ꢀLee,ꢀCatal.ꢀ
Today,ꢀ2004,ꢀ93‐95,ꢀ183−190.ꢀ
[
15] P.ꢀDjinović,ꢀJ.ꢀBatista,ꢀA.ꢀPintar,ꢀAppl.ꢀCatal.ꢀA,ꢀ2008,ꢀ347,ꢀ23−33.ꢀ
16] T.ꢀ M.ꢀDing,ꢀ H.ꢀ S.ꢀ Tian,ꢀJ.ꢀ C.ꢀLiu,ꢀW.ꢀB.ꢀWu,ꢀ J.ꢀT.ꢀYu,ꢀ Chin.ꢀJ.ꢀCatal.,ꢀ
+
0
toꢀsignificantꢀdifferencesꢀinꢀreducibilityꢀandꢀtheꢀCu /Cu ꢀvalue.ꢀ
TheseꢀCu/Zn/Al/Zrꢀcatalystsꢀgeneratedꢀatꢀdifferentꢀcalcinationꢀ
[
2016,ꢀ37,ꢀ484−493.ꢀ
temperaturesꢀ wereꢀ assessedꢀ duringꢀ CO
2
ꢀ hydrogenationꢀ toꢀ
[17] Z.ꢀL.ꢀYuan,ꢀL.ꢀN.ꢀWang,ꢀJ.ꢀH.ꢀWang,ꢀS.ꢀX.ꢀXia,ꢀP.ꢀChen,ꢀZ.ꢀY.ꢀHou,ꢀX.ꢀM.ꢀ
Zheng,ꢀAppl.ꢀCatal.ꢀB,ꢀ2011,ꢀ101,ꢀ431−440.ꢀ
[18] F.ꢀArena,ꢀK.ꢀBarbera,ꢀG.ꢀItaliano,ꢀG.ꢀBonura,ꢀL.ꢀSpadaro,ꢀF.ꢀFrusteri,ꢀ
J.ꢀCatal.,ꢀ2007,ꢀ249,ꢀ185−194.ꢀ
methanol,ꢀandꢀtheꢀCZAZ‐573ꢀsampleꢀshowedꢀsuperiorꢀactivity.ꢀ
AꢀCO2ꢀconversionꢀofꢀ24.5%ꢀwasꢀobtainedꢀalongꢀwithꢀaꢀmethanolꢀ
selectivityꢀofꢀ57.6%ꢀatꢀ543ꢀK.ꢀInꢀaddition,ꢀtheꢀCZAZ‐573ꢀsampleꢀ
exhibitedꢀ higherꢀ activityꢀ thanꢀ aꢀ cCZAZ‐573ꢀ sampleꢀ obtainedꢀ
usingꢀ co‐precipitation,ꢀ especiallyꢀ withꢀ regardꢀ toꢀ methanolꢀ se‐
[
[
[
[
19] F.ꢀArena,ꢀG.ꢀMezzatesta,ꢀG.ꢀZafarana,ꢀG.ꢀTrunfio,ꢀF.ꢀFrusteri,ꢀL.ꢀSpa‐
daro,ꢀJ.ꢀCatal.,ꢀ2013,ꢀ300,ꢀ141−151.ꢀ
20] X.ꢀM.ꢀGuo,ꢀD.ꢀS.ꢀMao,ꢀG.ꢀZ.ꢀLu,ꢀS.ꢀWang,ꢀG.ꢀS.ꢀWu,ꢀJ.ꢀCatal.,ꢀ2010,ꢀ271,ꢀ
lectivity.ꢀAꢀhighꢀexposedꢀCuꢀsurfaceꢀareaꢀevidentlyꢀfavorsꢀCO ꢀ
2
178−185.ꢀ
+
0
catalyticꢀ conversionꢀ whileꢀ aꢀ highꢀ valueꢀ ofꢀ Cu /Cu ꢀ resultingꢀ
fromꢀtheꢀuseꢀofꢀanꢀoptimalꢀcalcinationꢀtemperatureꢀisꢀevidentlyꢀ
helpfulꢀduringꢀtheꢀsynthesisꢀofꢀmethanol.ꢀ
21] M.ꢀW.ꢀTan,ꢀX.ꢀG.ꢀWang,ꢀX.ꢀX.ꢀWang,ꢀX.ꢀJ.ꢀZou,ꢀW.ꢀZ.ꢀDing,ꢀX.ꢀG.ꢀLu,ꢀJ.ꢀ
Catal.,ꢀ2015,ꢀ329,ꢀ151−166.ꢀ
22] P.ꢀGao,ꢀF.ꢀLi,ꢀF.ꢀK.ꢀXiao,ꢀN.ꢀZhao,ꢀN.ꢀN.ꢀSun,ꢀW.ꢀWei,ꢀL.ꢀS.ꢀZhong,ꢀY.ꢀH.ꢀ
Sun,ꢀCatal.ꢀSci.ꢀTechnol.,ꢀ2012,ꢀ2,ꢀ1447−1454.ꢀ
Referencesꢀ
[23] Y.ꢀF.ꢀZhu,ꢀX.ꢀKong,ꢀD.ꢀB.ꢀCao,ꢀJ.ꢀL.ꢀCui,ꢀY.ꢀL.ꢀZhu,ꢀY.ꢀW.ꢀLi,ꢀACSꢀCatal.,ꢀ
014,ꢀ4,ꢀ3675−3681.ꢀ
2
[
1] J.ꢀJ.ꢀWu,ꢀX.ꢀD.ꢀZhou,ꢀChin.ꢀJ.ꢀCatal.,ꢀ2016,ꢀ37,ꢀ999−1015.ꢀ
[24] X.ꢀM.ꢀGuo,ꢀD.ꢀS.ꢀMao,ꢀG.ꢀZ.ꢀLu,ꢀS.ꢀWang,ꢀG.ꢀS.ꢀWu,ꢀCatal.ꢀCommun.,ꢀ
2011,ꢀ12,ꢀ1095−1098.ꢀ
[2] G.ꢀA.ꢀOlah,ꢀA.ꢀGoeppert,ꢀG.ꢀK.ꢀS.ꢀPrakash,ꢀJ.ꢀOrg.ꢀChem.,ꢀ2009,ꢀ74,ꢀ
4
87−498.ꢀ
3] G.ꢀA.ꢀOlah,ꢀG.ꢀK.ꢀS.ꢀPrakash,ꢀA.ꢀGoeppert,ꢀJ.ꢀAm.ꢀChem.ꢀSoc.,ꢀ2011,ꢀ
33,ꢀ12881−12898.ꢀ
4] M.ꢀBehrens,ꢀJ.ꢀCatal.,ꢀ2009,ꢀ267,ꢀ24−29.ꢀ
5] O.ꢀ Martin,ꢀ J.ꢀ Perez‐Ramirez,ꢀ Catal.ꢀ Sci.ꢀ Technol.,ꢀ 2013,ꢀ 3,ꢀ 3343−
352.ꢀ
6] A.ꢀM.ꢀCao,ꢀR.ꢀW.ꢀLu,ꢀG.ꢀVeser,ꢀPhys.ꢀChem.ꢀChem.ꢀPhys.,ꢀ2010,ꢀ12,ꢀ
3499−13510.ꢀ
[25] G.ꢀBonura,ꢀM.ꢀCordaro,ꢀC.ꢀCannilla,ꢀF.ꢀArena,ꢀF.ꢀFrusteri,ꢀAppl.ꢀCatal.ꢀ
B,ꢀ2014,ꢀ152−153,ꢀ152−161.ꢀ
[26] S.ꢀH.ꢀZhu,ꢀX.ꢀQ.ꢀGao,ꢀY.ꢀL.ꢀZhu,ꢀY.ꢀF.ꢀZhu,ꢀH.ꢀY.ꢀZheng,ꢀY.ꢀW.ꢀLi,ꢀJ.ꢀCatal.,ꢀ
2013,ꢀ303,ꢀ70−79.ꢀ
[27] J.ꢀLiu,ꢀC.ꢀH.ꢀHan,ꢀX.ꢀZ.ꢀYang,ꢀG.ꢀJ.ꢀGao,ꢀQ.ꢀQ.ꢀShi,ꢀM.ꢀY.ꢀTong,ꢀX.ꢀF.ꢀLiang,ꢀ
C.ꢀLi,ꢀJ.ꢀCatal.,ꢀ2016,ꢀ33,ꢀ162−170.ꢀ
[28] B.ꢀZhang,ꢀY.ꢀL.ꢀZhu,ꢀG.ꢀQ.ꢀDing,ꢀH.ꢀY.ꢀZheng,ꢀY.ꢀW.ꢀLi,ꢀAppl.ꢀCatal.ꢀA,ꢀ
2012,ꢀ443−444,ꢀ191−201.ꢀ
[
1
[
[
ꢀ
3
[
[
[
[
1
7] S.ꢀH.ꢀZhu,ꢀX.ꢀQ.ꢀGao,ꢀY.ꢀL.ꢀZhu,ꢀW.ꢀB.ꢀFan,ꢀJ.ꢀG.ꢀWang,ꢀY.ꢀW.ꢀLi,ꢀCatal.ꢀ
Sci.ꢀTechnol.,ꢀ2015,ꢀ5,ꢀ1169−1180.ꢀ
8] L.ꢀShi,ꢀW.ꢀZ.ꢀShen,ꢀG.ꢀH.ꢀYang,ꢀX.ꢀJ.ꢀFan,ꢀY.ꢀZ.ꢀJin,ꢀC.ꢀY.ꢀZeng,ꢀK.ꢀMatsu‐
da,ꢀN.ꢀTsubaki,ꢀJ.ꢀCatal.,ꢀ2013,ꢀ302,ꢀ83−90.ꢀ
[29] A.ꢀDandekar,ꢀM.ꢀA.ꢀVannice,ꢀJ.ꢀCatal.,ꢀ1998,ꢀ178,ꢀ621−639.ꢀ
[30] S.ꢀ Natesakhawat,ꢀ J.ꢀW.ꢀ Lekse,ꢀJ.ꢀP.ꢀ Baltrus,ꢀP.ꢀR.ꢀ Ohodnicki,ꢀ B.ꢀ H.ꢀ
Howard,ꢀX.ꢀY.ꢀDeng,ꢀC.ꢀMatranga,ꢀACSꢀCatal.,ꢀ2012,ꢀ2,ꢀ1667−1676.ꢀ
[31] G.ꢀD.ꢀWu,ꢀX.ꢀL.ꢀWang,ꢀW.ꢀWei,ꢀY.ꢀH.ꢀSun,ꢀAppl.ꢀCatal.ꢀA,ꢀ2010,ꢀ377,ꢀ
107−113.ꢀ
9] X.ꢀ M.ꢀ Liu,ꢀ G.ꢀ Q.ꢀ Lu,ꢀ Z.ꢀ F.ꢀ Yan,ꢀ J.ꢀ Beltramini,ꢀ Ind.ꢀ Eng.ꢀ Chem.ꢀ Res.,ꢀ
2
003,ꢀ42,ꢀ6518−6530.ꢀ
[32] P.ꢀGao,ꢀF.ꢀLi,ꢀH.ꢀJ.ꢀZhan,ꢀN.ꢀZhao,ꢀF.ꢀK.ꢀXiao,ꢀW.ꢀWei,ꢀL.ꢀS.ꢀZhong,ꢀH.ꢀ
Wang,ꢀY.ꢀH.ꢀSun,ꢀJ.ꢀCatal.,ꢀ2013,ꢀ298,ꢀ51−60.ꢀ
[
10] S.ꢀBelin,ꢀC.ꢀL.ꢀBracey,ꢀV.ꢀBriois,ꢀP.ꢀR.ꢀEllis,ꢀG.ꢀJ.ꢀHutchings,ꢀT.ꢀI.ꢀHyde,ꢀ
G.ꢀSankar,ꢀCatal.ꢀSci.ꢀTechnol.,ꢀ2013,ꢀ3,ꢀ2944−2957.ꢀ
[33] M.ꢀ Saito,ꢀ T.ꢀ Fujitani,ꢀ M.ꢀ Takeuchi,ꢀ T.ꢀ Watanabe,ꢀ Appl.ꢀ Catal.ꢀ A,ꢀ
GraphicalꢀAbstractꢀ
Chin.ꢀJ.ꢀCatal.,ꢀ2017,ꢀ38:ꢀ717–725ꢀ ꢀ ꢀ doi:ꢀ10.1016/S1872‐2067(17)62793‐1
CO ꢀhydrogenationꢀtoꢀmethanolꢀoverꢀCu/Zn/Al/Zrꢀcatalystsꢀpreparedꢀbyꢀ ꢀ
2
Calcination temperature (K)
73
liquidꢀreductionꢀ
5
ꢀ
XiaosuꢀDong,ꢀFengꢀLi*,ꢀNingꢀZhao,ꢀYishengꢀTan,ꢀJunweiꢀWang,ꢀFukuiꢀXiaoꢀ
InstituteꢀofꢀCoalꢀChemistry,ꢀChineseꢀAcademyꢀofꢀSciences;ꢀ ꢀ
UniversityꢀofꢀChineseꢀAcademyꢀofꢀSciences;ꢀ ꢀ
NationalꢀEngineeringꢀResearchꢀCenterꢀforꢀCoal‐basedꢀSynthesisꢀ
Cu+
ꢀ
ꢀ
2+
+
0
Cu/Zn/Al/ZrꢀcatalystsꢀcontainingꢀCu ,ꢀCu ꢀandꢀCu ꢀwereꢀpreparedꢀviaꢀaꢀliquidꢀre‐
ductionꢀmethodꢀandꢀthenꢀcalcinedꢀatꢀdifferentꢀtemperatures.ꢀTheseꢀmaterialsꢀwereꢀ
Cu/Zn/Al/Zr catalyst
subsequentlyꢀappliedꢀtoꢀtheꢀsynthesisꢀofꢀmethanolꢀbyꢀtheꢀhydrogenationꢀofꢀCO
assessꢀtheꢀeffectsꢀofꢀvaryingꢀtheꢀcalcinationꢀtemperature.ꢀ
2
ꢀtoꢀ
CO +3H
2
2