J Po lue r an sa el od foMna ot et rai ad l js u Cs ht emm ai rs gt ri yn sA
Page 6 of 8
ARTICLE
Journal Name
Chemsuschem, 2016, 9, 1972-1979.
6. B. Kumar, M. Llorente, J. Froehlich, T. Dang, A. Sathrum and C. P.
Kubiak, Annual Review of Physical Chemistry, Vol 63, 2012, 63,
DOI: 10.1039/C7TA09672K
product distribution. The potential for peak faradaic efficiency
of HCOOH was observed to shift ~ 400 mV under illumination,
with Si photocathodes achieving a faradaic efficiency of 59.2%
at -0.4 V vs. RHE and a partial current density for formic acid
1
541-569.
1
1
7. S. Das and W. Daud, Rsc Advances, 2014, 4, 20856-20893.
8. W. W. Lu, B. Jia, B. L. Cui, Y. Zhang, K. S. Yao, Y. L. Zhao and J. J.
Wang, Angew. Chem.-Int. Edit., 2017, 56, 11851-11854.
9. Y. C. Wang, B. AlOtaibi, F. A. Chowdhury, S. Z. Fan, M. G. Kibria,
L. Li, C. J. Li and Z. T. Mi, APL Materials, 2015, 3, 116106.
-
2
formation of JHCOOH ~ 10 mA cm . As an energy-dense liquid
product with a high profit margin relative to other CO
2
reduction products, formic acid is appealing as a molecule for
the storage of intermittent solar energy. The demonstrated
1
photocathodes could thus serve as one component of a tandem 20. Y. H. Yang, R. R. Xie, H. Li, C. J. Liu, W. H. Liu and F. Q. Zhan,
system for a viable solar-driven CO
2
-to-HCOOH process.
Transactions of Nonferrous Metals Society of China, 2016, 26,
390-2396.
1. Y. H. Yang, F. Q. Zhan, H. Li, W. H. Liu and S. Yu, J. Solid State
Electrochem., 2017, 21, 2231-2240.
2. J. K. Sheu, P. H. Liao, T. C. Huang, K. J. Chiang, W. C. Lai and M. L.
Lee, Sol. Energy Mater. Sol. Cells, 2017, 166, 86-90.
2
2
2
2
Conflicts of interest
There are no conflicts to declare.
3. G. Yin, H. Abe, R. Kodiyath, S. Ueda, N. Srinivasan, A. Yamaguchi
and M. Miyauchi, Journal of Materials Chemistry A, 2017, 5,
Acknowledgements
12113-12119.
2
2
2
2
4. T. Arai, S. Tajima, S. Sato, K. Uemura, T. Morikawa and T. Kajino,
Chem. Commun., 2011, 47, 12664-12666.
5. X. F. Huang, T. C. Cao, M. C. Liu and G. H. Zhao, J. Phys. Chem. C,
The authors acknowledge support from the Conn Center for
Renewable Energy Research at the University of Louisville. K.R.
Rao also acknowledges support from the University Grants
Commission, Government of India, for providing a Raman Post-
doctoral Fellowship to conduct work at the Conn Center at the
University of Louisville. We also gratefully acknowledge
assistance from Dr. Jacek Jasinski of the Materials
2
013, 117, 26432-26440.
6. U. Kang, S. K. Choi, D. J. Ham, S. M. Ji, W. Choi, D. S. Han, A. Abdel-
Wahabe and H. Park, Energy Environ. Sci., 2015, 8, 2638-2643.
7. D. H. Won, C. H. Choi, J. Chung and S. I. Woo, Applied Catalysis B-
Environmental, 2014, 158, 217-223.
Characterization Service Center of the Conn Center at the 28. D. H. Won, J. Chung, S. H. Park, E. H. Kim and S. I. Woo, Journal of
University of Louisville.
Materials Chemistry A, 2015, 3, 1089-1095.
2
9. S. K. Choi, U. Kang, S. Lee, D. J. Ham, S. M. Ji and H. Park,
Advanced Energy Materials, 2014, 4, 1301614.
Notes and references
30. X. H. Zhou, R. Liu, K. Sun, Y. K. Chen, E. Verlage, S. A. Francis, N.
S. Lewis and C. X. Xiang, Acs Energy Letters, 2016, 1, 764-770.
1. S. Hu, C. X. Xiang, S. Haussener, A. D. Berger and N. S. Lewis,
Energy Environ. Sci., 2013, 6, 2984-2993.
2. R. Hinogami, Y. Nakamura, S. Yae and Y. Nakato, J. Phys. Chem. B,
1
2
3
4
5
6
. N. S. Lewis and D. G. Nocera, Proc. Natl. Acad. Sci. U. S. A., 2006,
03, 15729-15735.
. M. Gratzel, Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci., 2007,
65, 993-1005.
. M. Mikkelsen, M. Jorgensen and F. C. Krebs, Energy Environ. Sci.,
010, 3, 43-81.
. S. C. Roy, O. K. Varghese, M. Paulose and C. A. Grimes, ACS Nano,
010, 4, 1259-1278.
. T. T. H. Hoang, S. C. Ma, J. I. Gold, P. J. A. Kenis and A. A. Gewirth,
ACS Catal., 2017, 7, 3313-3321.
. Y. Hori, I. Takahashi, O. Koga and N. Hoshi, Journal of Molecular
Catalysis a-Chemical, 2003, 199, 39-47.
3
3
3
3
1
3
1
998, 102, 974-980.
3. T. Q. Nguyen, V. Atla, V. K. Vendra, A. K. Thapa, J. B. Jasinski, T. L.
Druffel and M. K. Sunkara, Chem. Eng. Sci., 2016, 154, 20-26.
4. S. W. Boettcher, E. L. Warren, M. C. Putnam, E. A. Santori, D.
Turner-Evans, M. D. Kelzenberg, M. G. Walter, J. R. McKone, B. S.
Brunschwig, H. A. Atwater and N. S. Lewis, J. Am. Chem. Soc.,
2
2
2
011, 133, 1216-1219.
3
5. N. C. Strandwitz, D. J. Comstock, R. L. Grimm, A. C. Nichols-
Nielander, J. Elam and N. S. Lewis, J. Phys. Chem. C, 2013, 117,
7
8
. D. Ren, B. S. H. Ang and B. S. Yeo, ACS Catal., 2016, 6, 8239-8247.
. J. Qiao, Y. Liu, F. Hong and J. Zhang, Chem. Soc. Rev., 2014, 43,
4
931-4936.
3
6. M. X. Tan, P. E. Laibinis, S. T. Nguyen, J. M. Kesselman, C. E.
6
31-675.
. Y. H. Chen and M. W. Kanan, J. Am. Chem. Soc., 2012, 134, 1986-
989.
0. S. Zhang, P. Kang and T. J. Meyer, J. Am. Chem. Soc., 2014, 136,
734-1737.
Stanton and N. S. Lewis, in Progress in Inorganic Chemistry, Vol
9
1
1
1
41, 1994, pp. 21-144.
1
3
3
3
7. A. J. Bard and L. R. Faulkner, Electrochemical Methods:
Fundamentals and Applications, John Wiley & Sons, 2001.
8. R. C. Rossi, M. X. Tan and N. S. Lewis, Appl. Phys. Lett., 2000, 77,
1
1. M. F. Baruch, J. E. Pander, J. L. White and A. B. Bocarsly, ACS
Catal., 2015, 5, 3148-3156.
2. B. Kumar, V. Atla, J. P. Brian, S. Kumari, T. Q. Nguyen, M. Sunkara
and J. M. Spurgeon, Angew. Chem.-Int. Edit., 2017, 56, 3645-
2698-2700.
9. M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. X.
Mi, E. A. Santori and N. S. Lewis, Chem. Rev., 2010, 110, 6446-
6473.
3
649.
4
4
0. S. Y. Chen and L. W. Wang, Chem. Mater., 2012, 24, 3659-3666.
1. F. W. Li, L. Chen, G. P. Knowles, D. R. MacFarlane and J. Zhang,
Angew. Chem.-Int. Edit., 2017, 56, 505-509.
1
3. D. Mellmann, P. Sponholz, H. Junge and M. Beller, Chem. Soc.
Rev., 2016, 45, 3954-3988.
14. A. K. Singh, S. Singh and A. Kumar, Catalysis Science &
Technology, 2016, 6, 12-40.
6
| J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins