ChemSusChem
10.1002/cssc.202001940
FULL PAPER
Conclusion
[2] A. M. Appel, J. E. Bercaw, A. B. Bocarsly, H. Dobbek, D. L.
DuBois, M. Dupuis, J. G. Ferry, E. Fujita, R. Hille, P. J. A.
Kenis, C. A. Kerfeld, R. H. Morris, C. H. F. Peden, A. R.
Portis, S. W. Ragsdale, T. B. Rauchfuss, J. N. H. Reek, L. C.
Seefeldt, R. K. Thauer, G. L. Waldrop, Chem. Rev. 2013,
We have developed a series of highly active aniline-substituted
manganese bipyridyl catalysts for electro- and photo-driven CO
reduction. These catalysts feature pendant -NH groups at well-
2
2
113, 6621–6658.
defined distances from the metal center, which can promote
beneficial second-sphere interactions during the catalytic cycle.
As expected, a pronounced structure-activity relationship was
[3] R. Francke, B. Schille, M. Roemelt, Chem. Rev. 2018, 118,
4631–4701.
[
[
[
4] P. Kang, Z. Chen, M. Brookhart, T. J. Meyer, Top Catal 2015,
8, 30–45.
5] H. Takeda, C. Cometto, O. Ishitani, M. Robert, ACS Catal.
017, 7, 70–88.
6] D. C. Grills, M. Z. Ertem, M. McKinnon, K. T. Ngo, J.
Rochford, Coordination Chemistry Reviews 2018, 374, 173–
217.
5
2
observed where the catalyst with the -NH group in closest
proximity to the metal center (1-Mn) exhibits superior catalytic
performance relative to the other complexes studied under both
electro- and photocatalytic conditions. Importantly, 1-Mn does not
succumb to deactivation by deleterious coordination of the amine
to the metal center as proposed for its rhenium counterpart.[14]
Overall the reported manganese catalysts are significantly more
active than their rhenium analogues. Additionally, the hydrogen-
bonding interactions engendered by the aniline groups promote
the much sought-after “protonation-first pathway”, which allows
the catalysts to perform at a significantly lower overpotential. The
catalytic potential in the low overpotential regime of 1-Mn is lower
or comparable to state-of-the-art manganese bipyridyl catalysts
with benzylic alkylamine or imidazolium groups in the second-
coordination sphere (Table S9). Furthermore, the overpotentials,
turnover frequencies, and selectivities of this series at the higher
overpotential regime compare favorably to other known
homogeneous manganese-based catalysts (Table S9).
Photocatalytic experiments with the aid of an external
photosensitizer shows that the catalysts reported herein can
2
[7] M. Stanbury, J.-D. Compain, S. Chardon-Noblat,
Coordination Chemistry Reviews 2018, 361, 120–137.
[
8] M. H. Rønne, D. Cho, M. R. Madsen, J. B. Jakobsen, S. Eom,
É. Escoudé, H. C. D. Hammershøj, D. U. Nielsen, S. U.
Pedersen, M.-H. Baik, T. Skrydstrup, K. Daasbjerg, J. Am.
Chem. Soc. 2020, 142, 4265–4275.
[9] S. Sung, X. Li, L. M. Wolf, J. R. Meeder, N. S. Bhuvanesh,
K. A. Grice, J. A. Panetier, M. Nippe, J. Am. Chem. Soc.
2019, 141, 6569–6582.
[
[
10] K. T. Ngo, M. McKinnon, B. Mahanti, R. Narayanan, D. C.
Grills, M. Z. Ertem, J. Rochford, J. Am. Chem. Soc. 2017,
139, 2604–2618.
11] W. Yang, S. Sinha Roy, W. C. Pitts, R. L. Nelson, F. R.
Fronczek, J. W. Jurss, Inorg. Chem. 2018, 57, 9564–9575.
[12] N. P. Liyanage, W. Yang, S. Guertin, S. S. Roy, C. A.
Carpenter, R. E. Adams, R. H. Schmehl, J. H. Delcamp, J.
W. Jurss, Chem. Commun. 2019, 55, 993–996.
[13] F. Franco, C. Cometto, L. Nencini, C. Barolo, F. Sordello, C.
Minero, J. Fiedler, M. Robert, R. Gobetto, C. Nervi,
Chemistry – A European Journal 2017, 23, 4782–4793.
mediate the 2e– reduction of CO
2
to CO and HCO
2
H with
exceptional carbon selectivity. Catalyst 1-Mn compares favorably
to reported manganese tricarbonyl photocatalysts, including
those with second-coordination sphere functional groups (Table
S10). This report establishes that aniline moieties can serve as
effective second-coordination sphere pendants, significantly
enhancing the catalytic CO reduction activity of the studied
2
manganese catalysts while reducing their overpotential and
maintaining high product selectivity.
[
14] K. Talukdar, S. Sinha Roy, E. Amatya, E. A. Sleeper, P. Le
Magueres, J. W. Jurss, Inorg. Chem. 2020, 59, 6087–6099.
[15] I. Fokin, A. Denisiuk, C. Würtele, I. Siewert, Inorg. Chem.
2019, 58, 10444–10453.
[
[
[
[
16] J. Agarwal, T. W. Shaw, H. F. Schaefer, A. B. Bocarsly, Inorg.
Chem. 2015, 54, 5285–5294.
17] S. A. Roell, B. R. Schrage, C. J. Ziegler, T. A. White,
Inorganica Chimica Acta 2020, 503, 119397.
18] A. N. Hellman, R. Haiges, S. C. Marinescu, Dalton Trans.
2
019, 48, 14251–14255.
19] A. W. Nichols, C. W. Machan, Front. Chem. 2019, 7, DOI
0.3389/fchem.2019.00397.
Acknowledgements
1
[
[
20] D. L. DuBois, Inorg. Chem. 2014, 53, 3935–3960.
21] C. Riplinger, M. D. Sampson, A. M. Ritzmann, C. P. Kubiak,
E. A. Carter, J. Am. Chem. Soc. 2014, 136, 16285–16298.
22] C. W. Machan, M. D. Sampson, S. A. Chabolla, T. Dang, C.
P. Kubiak, Organometallics 2014, 33, 4550–4559.
23] X. Su, K. M. McCardle, L. Chen, J. A. Panetier, J. W. Jurss,
ACS Catal. 2019, 9, 7398–7408.
24] K. Talukdar, A. Issa, J. W. Jurss, Front. Chem. 2019, 7, DOI
10.3389/fchem.2019.00330.
25] X. Su, K. M. McCardle, J. A. Panetier, J. W. Jurss, Chem.
Commun. 2018, 54, 3351–3354.
We thank the National Science Foundation for generous funding
through a CAREER award (CHE-1848478).
[
[
[
[
[
Conflict of Interest
The authors declare no conflict of interest.
26] E. S. Rountree, B. D. McCarthy, T. T. Eisenhart, J. L.
Dempsey, Inorg. Chem. 2014, 53, 9983–10002.
Keywords: manganese • homogeneous catalysis • CO
2
reduction
[27] C. Costentin, S. Drouet, M. Robert, J.-M. Savéant, Science
2012, 338, 90–94.
[
•
second-coordination sphere interactions • structure-activity
28] M. D. Sampson, A. D. Nguyen, K. A. Grice, C. E. Moore, A.
relationships
L. Rheingold, C. P. Kubiak, J. Am. Chem. Soc. 2014, 136,
5460–5471.
[
[
29] V. Artero, M. Fontecave, Chem. Soc. Rev. 2013, 42, 2338–
2356.
30] H. Shirley, X. Su, H. Sanjanwala, K. Talukdar, J. W. Jurss, J.
H. Delcamp, J. Am. Chem. Soc. 2019, 141, 6617–6622.
References
[
1] G. A. Olah, G. K. S. Prakash, A. Goeppert, J. Am. Chem.
Soc. 2011, 133, 12881–12898.
8
This article is protected by copyright. All rights reserved.