Organic Letters
Letter
Napthyridinomycin and Lemomycin Tetrahydroisoquinoline Anti-
tumor Antibiotics (TAAs). Chem. Soc. Rev. 2008, 37, 2676−2690.
(c) Liao, X.; Dong, W.; Liu, W.; Chen, S.; Liu, Z. Synthetic Progress
of the Tetrahydroisoquinoline Antitumor Alkaloids. Chin. J. Org.
Chem. 2010, 30, 317−329.
Palladium(II)-Catalyzed Atroposelective C−H Alkynylation. Angew.
Chem., Int. Ed. 2018, 57, 3661−3665.
(9) (a) Godula, K.; Sames, D. C−H Bond Functionalization in
Complex Organic Synthesis. Science 2006, 312, 67−72. (b) Gutekunst,
W. R.; Baran, P. S. C−H Functionalization Logic in Total Synthesis.
Chem. Soc. Rev. 2011, 40, 1976−1991. (c) McMurray, L.; O’Hara, F.;
Gaunt, M. J. Recent Developments in Natural Product Synthesis
Using Metal-Catalysed C−H Bond Functionalisation. Chem. Soc. Rev.
2011, 40, 1885−1898. (d) Yamaguchi, J.; Yamaguchi, A. D.; Itami, K.
C−H Bond Functionalization: Emerging Synthetic Tools for Natural
Products and Pharmaceuticals. Angew. Chem., Int. Ed. 2012, 51,
8960−9009. (e) Zhang, B.; Guan, H.-X.; Liu, B.; Shi, B.-F. Transition-
Metal-Catalyzed Arylation of Unactivated C(sp3)-H Bonds Assisted
by Bidentate Directing Groups. Youji Huaxue 2014, 34, 1487−1498.
(f) Abrams, D. J.; Provencher, P. A.; Sorensen, E. J. Recent
Applications of C−H Functionalization in Complex Natural Product
Synthesis. Chem. Soc. Rev. 2018, 47, 8925−8967.
(3) (a) Fujimoto, K.; Oka, T.; Morimoto, M. Antitumor Activity of a
Novel Antitumor Antibiotic Quinocarmycin Citrate (KW2152).
Cancer Res. 1987, 47, 1516−1522. (b) Kanamaru, R.; Konishi, Y.;
Ishioka, C.; Kakuta, H.; Sato, T.; Ishikawa, A.; Asamura, M.; Wakui,
A. The Mechanism of Action of Quinocarmycin Citrate (KW 2152)
on Mouse L1210 Cells in Vitro. Cancer Chemother. Pharmacol. 1988,
22, 197−200. (c) Saito, H.; Hirata, T.; Kasai, M.; Fujimoto, K.;
Ashizawa, T.; Morimoto, M.; Sato, A. Synthesis and Biological
Evaluation of Quinocarcin Derivatives: Thioalkyl-Substituted Qui-
nones and Hydroquinones. J. Med. Chem. 1991, 34, 1959−1966.
(d) Kahsai, A. W.; Zhu, S. T.; Wardrop, D. J.; Lane, W. S.; Fenteany,
G. Quinocarmycin Analog DX-52−1 Inhibits Cell Migration and
Targets Radixin, Disrupting Interactions of Radixin with Actin and
CD44. Chem. Biol. 2006, 13, 973−983.
(10) Chen, K.; Zhang, S. Q.; Xu, J. W.; Hu, F.; Shi, B.-F. A General
and Practical Palladium-catalyzed Monoarylation of ß-methyl C-
(sp3)−H of Alanine. Chem. Commun. 2014, 50, 13924−13927.
(11) For representative examples and reviews, see: (a) Zhang, Q.;
Chen, K.; Rao, W.-H.; Zhang, Y.; Chen, F.-J.; Shi, B.-F. Stereo-
selective Synthesis of Chiral α-Amino-β-Lactams via Pd(II)-Catalyzed
Sequential Monoarylation/Amidation of C(sp3)−H Bonds. Angew.
Chem., Int. Ed. 2013, 52, 13588−13592. (b) He, J.; Li, S.; Deng, Y.;
Fu, H.; Laforteza, B. N.; Spangler, J. E.; Homs, A.; Yu, J.-Q. Ligand-
Controlled C(sp3)−H Arylation and Olefination in Syntheses of
Unnatural Chiral α-Amino Acids. Science 2014, 343, 1216−1220.
(c) Wang, B.; Nack, W. A.; He, G.; Zhang, S.; Chen, G. Palladium-
Catalyzed Trifluoroacetate-Promoted Mono-Arylation of β Methyl
Group of Alanine at Room Temperature: Synthesis of β-Arylated α-
Amino Acids through Sequential C−H Functionalization. Chem. Sci.
2014, 5, 3952−3957. (d) Noisier, A. F. M.; Brimble, M. A. C−H
Functionalization in the Synthesis of Amino Acids and Peptides.
Chem. Rev. 2014, 114, 8775−8806. (e) Lu, X.; Xiao, B.; Shang, R.;
Liu, L. Synthesis of Unnatural Amino Acids through Palladium-
Catalyzed C(sp3)−H Functionalization. Chin. Chem. Lett. 2016, 27,
305−311. (f) He, G.; Wang, B.; Nack, W. A.; Chen, G. Syntheses and
Transformations of α-Amino Acids via Palladium-Catalyzed Auxiliary-
Directed sp3C−H Functionalization. Acc. Chem. Res. 2016, 49, 635−
645. (g) Wang, W.; Lorion, M.; Shah, J.; Kapdi, A. R.; Ackermann, L.
Late-stage Peptide Diversification by Position-Selective C−H
Activation. Angew. Chem., Int. Ed. 2018, 57, 14700−14717.
(h) Chen, K.; Shi, B.-F. Macrocyclic Peptide Construction through
C−H Activation Strategy. Sci. Bull. 2018, 63, 1238−1240.
(4) For the total synthesis of ( )-quinocarcin, see: Fukuyama, T.;
Nunes, J. J. Stereocontrolled Total Synthesis of ( )-Quinocarcin. J.
Am. Chem. Soc. 1988, 110, 5196−5198.
(5) For asymmetric total synthesis of (−)-quinocarcin, see:
(a) Garner, P.; Ho, W. B.; Shin, H. Asymmetric Synthesis of
(−)-Quinocarcin. J. Am. Chem. Soc. 1992, 114, 2767−2768.
(b) Garner, P.; Ho, W. B.; Shin, H. The Asymmetric Synthesis of
(−)-Quinocarcin via a 1,3-Dipolar Cycloadditive Strategy. J. Am.
Chem. Soc. 1993, 115, 10742−10753. (c) Katoh, T.; Kirihara, M.;
Nagata, Y.; Kobayashi, Y.; Arai, K.; Minami, J.; Terashima, S.
Synthetic Studies on Quinocarcin and Its Related Compounds. 4.:
Total Synthesis of Enantiomeric Pairs of Quinocarcin and 10-
Decarboxyquinocarcin. Tetrahedron 1994, 50, 6239−6258. (d) Katoh,
T.; Terashima, S. Synthesis and Cytotoxicity of Natural (−)-Quino-
carcin and Its Related Compounds. Pure Appl. Chem. 1996, 68, 703−
706. (e) Kwon, S.; Myers, A. G. Synthesis of (−)-Quinocarcin by
Directed Condensation of α-Amino Aldehydes. J. Am. Chem. Soc.
2005, 127, 16796−16797. (f) Wu, Y.-C.; Liron, M.; Zhu, J.
Asymmetric Total Synthesis of (−)-Quinocarcin. J. Am. Chem. Soc.
2008, 130, 7148−7152. (g) Allan, K.; Stoltz, B. M. A Concise Total
Synthesis of (−)-Quinocarcin via Aryne Annulation. J. Am. Chem. Soc.
2008, 130, 17270−17271. (h) Chiba, H.; Oishi, S.; Fujii, N.; Ohno,
H. Total Synthesis of (−)-Quinocarcin by Gold(I)-Catalyzed
Regioselective Hydroamination. Angew. Chem. Chem. Int. 2012, 124,
9303−9306. (i) Chiba, H.; Sakai, Y.; Ohara, A.; Oishi, S.; Fujii, N.;
Ohno, H. Convergent Synthesis of (−)-Quinocarcin Based on the
Combination of Sonogashira Coupling and Gold(I)-Catalyzed 6-
endo-dig Hydroamination. Chem. - Eur. J. 2013, 19, 8875−8883.
(6) (a) Danishefsky, S. J.; Harrison, P. J.; Webb, R. R., II; O’Neill, B.
T. Total Synthesis of Quinocarcinol Methyl Ester. J. Am. Chem. Soc.
1985, 107, 1421−1423. (b) Flanagan, M. E.; Williams, R. M.
Synthetic Studies on Quinocarcin: Total Synthesis of ( )-Quino-
carcinamide via Dipole Cycloaddition of an Azomethine Ylide
Generated by NBS Oxidation. J. Org. Chem. 1995, 60, 6791−6797.
(7) (a) Welin, E. R.; Ngamnithiporn, A.; Klatte, M.; Lapointe, G.;
Pototschnig, G. M.; McDermott, M. S. J.; Conklin, D.; Gilmore, C.
D.; Tadross, P. M.; Haley, C. K.; Negoro, K.; Glibstrup, E.;
̈
(12) (a) Garner, P.; Kaniskan, H. U. The Asymmetric [C+NC+CC]
Coupling Reaction: Development and Application to Natural Product
Synthesis. Curr. Org. Synth. 2010, 7, 348−362. (b) Li, J.; Ye, Y.;
Zhang, Y. Cycloaddition/Annulation Strategies for the Construction
of Multisubstituted Pyrrolidines and Their Applications in Natural
Product Synthesis. Org. Chem. Front. 2018, 5, 864−892. (c) Adrio, J.;
Carretero, J. C. Recent Advances in the Catalytic Aymmetric 1,3-
Dipolar Cycload-dition of Azomethine Ylides. Chem. Commun. 2014,
50, 12434−12446.
(13) Garner, P.; Hu, J.; Parker, G.; Youngsb, W.; Medvetzb, D. The
CuI-catalyzed exo-Selective Asymmetric Multicomponent [C+NC
+CC] Coupling Reaction. Tetrahedron Lett. 2007, 48, 3867−3870.
(14) Ag(I)-catalyzed endoselective [C + NC + CC] coupling
reaction leading to 4,5-cis disubstituted pyrrolidines has been
successfully applied to the synthesis of cyanocycline A and
Grunanger, C. U.; Allan, K. M.; Virgil, S. C.; Slamon, D. J.; Stoltz, B.
̈
M. Concise Total Syntheses of (−)-Jorunnamycin A and (−)-Jor-
umycin Enabled by Asymmetric Catalysis. Science 2019, 363, 270−
275. (b) He, W.; Zhang, Z.; Ma, D. A Scalable Total Synthesis of the
Antitumor Agents Et-743 and Lurbinectedin. Angew. Chem., Int. Ed.
2019, 58, 3972−3975.
̈
bioxalomycin β2: (a) Garner, P.; Kaniskan, H. U.; Hu, J.; Youngs,
W. J.; Panzner, M. Asymmetric Multicomponent [C+NC+CC]
Synthesis of Highly Functionalized Pyrrolidines Catalyzed by
Silver(I). Org. Lett. 2006, 8, 3647−3650. (b) Garner, P.; Kaniskan,
(8) Fan, J.; Yao, Q.-J.; Liu, Y.-H.; Liao, G.; Zhang, S.; Shi, B.-F.
Asymmetric Total Synthesis of TAN-1085 Facilitated by Pd-
Catalyzed Atroposelective C-H Olefination. Org. Lett. 2019, 21,
3352. (b) Liao, G.; Yao, Q.-J.; Zhang, Z.-Z.; Wu, Y.-J.; Huang, D.-Y.;
Shi, B.-F. Scalable, Stereocontrolled Formal Syntheses of (+)-Iso-
schizandrin and (+)-Steganone: Development and Applica-tions of
̈
H. U. An Efficient Synthetic Approach to Cyanocycline A and
Bioxalomycin β2 via [C+NC+CC] Coupling. J. Am. Chem. Soc. 2007,
129, 15460−15461.
(15) Song, S.; Sun, X.; Li, X. W.; Yuan, Y. Z.; Jiao, N. Efficient and
Practical Oxidative Bromination and Iodination of Arenes and
D
Org. Lett. XXXX, XXX, XXX−XXX