10.1002/asia.202100507
Chemistry - An Asian Journal
COMMUNICATION
membranes were activated by N2 sweeping at 100 °C prior to gas
permeation experiments. The activation temperature was
determined by TGA curve (Figure S9). The results are shown with
the kinetic diameter of the gas molecules (Figure 5(a)). The
membrane exhibits the highest permeance for H2 (2.73 × 10-8 mol
m-2 s-1 Pa-1), and the permeances decrease with an order of H2 >
CO2 > N2 > CH4 > C2H4, which corresponds to their kinetic
diameters except for CO2. The calculated ideal selectivities for
H2/CO2, H2/N2, H2/CH4 and H2/C2H4 are 5.2, 4.4 ,4.6 and 6.5,
respectively. The experimental separation factors for H2 over CO2,
CH4, N2 and C2H4 obtained by 1:1 binary-gas permeation tests are
5.0, 4.1, 4.4, and 6.2. All of the separation factors superpass
Knudesen constant and C2H4 molecules have the lowest
permeability, indicative of the sieving effect of the membrane. The
stronger CO2 adsorption of Kgm-OEt (Figure S10) can reduce the
CO2 mobility so that the membrane shows lower permeance of
CO2 than N2 and CH4.[32,33] H2/CO2 selectivity is also higher than
those of polymer membranes based on Robeson (2008) and
Robeson (1991) (Figure 5(b)).[34]
improve the growth of Kgm-OEt on the Al2O3 substrate to form a
defect-free membrane.
In summary, a continuous and defect-free MOF Kgm-OEt
membrane has been successfully synthesized by the secondary
growth approach on the APTEs-modified porous Al2O3 substrate
surface. We applied an LBL method to construct the seed layer
for this kagomé-type of MOF. It is shown that APTEs-modified
Al2O3 substrate can form a fully covered seed layer. The particle
size of the seed is smaller on the APTEs-modified substrate than
the unmodified substrate. The microstructure of the membrane
grew in the APTEs-modified substrate is greatly improved
compared with the unmodified substrate. Our work would give a
convenient method for the preparation of various types of MOF
membranes, especially those based on metal carboxylates, which
cause defects by the ordinary methods.
Acknowledgements
This work was supported by the PRESTO (Grant No.
JPMJPR141C) and CREST (Grant No. JPMJCR17I3) of the
Japan Science and Technology Agency (JST), and JSPS
KAKENHI (Grant No. JP18K14043, JP19H02734, JP20H02575,
and JP20K20564). X. Wang acknowledges the financial support
from China Scholarship Council (No. 201806060138).
Keywords: Metal-organic framework 1 • MOF membrane 2 •
Gas permeation 3 •
[1]
[2]
[3]
[4]
[5]
[6]
[7]
H. Furukawa, M. A. Miller, O. M. Yaghi, J. Mater. Chem. 2007, 17, 3197-
3204.
S. Kusaka, A. Kiyose, H. Sato, Y. Hijikata, A. Hori, Y. Ma, R. Matsuda, J.
Am. Chem. Soc. 2019, 141, 15742-15746.
L. Li, R. Lin, R. Krishna, H. Li, S. Xiang, H. Wu, J. Li, W. Zhou, B. Chen,
Science 2018, 362, 443-446.
H. Sato, W. Kosaka, R. Matsuda, A. Hori, Y. Hijikata, R. V. Belosludov,
S. Sakaki, M. Takata, S. Kitagawa, Science 2014, 343, 167-170.
J. S. Seo, D. Whang, H. Lee, S.I. Jun, J. Oh, Y. J. Jeon, K. Kim, Nature
2000, 404, 982-986.
Figure 4. (a) SEM, (b) EDX mapping (Green: Al, red: Cu) of membrane on the
APTEs-modified substrate. (c) Photograph of the APTEs-modified Al2O3
substrate: left, Kgm-OEt seed layer: middle and Kgm-OEt membrane: right.
P. Horcajada, C. Serre, M. Vallet-Regí, M. Sebban, F. Taulelle, G. Férey,
Angew. Chem. Int. Ed. 2006, 45, 5974-5978.
3.0
7
Ideal selectivity
5.2
6.5
(b)
(a)
H2
Y. Ma, R. Matsuda, H. Sato, Y. Hijikata, L. Li, S. Kusaka, M. Foo, F. Xue,
G. Akiyama, R. Yuan, S. Kitagawa, J. Am. Chem. Soc. 2015, 50, 15825-
15832.
6
5
4
3
2
1
0
2.5
2.0
1.5
1.0
0.5
0.0
4.6
4.4
100
10
1
Kgm-OEt membrane
Polymers
[8]
[9]
G. E. Cmarik, M. Kim, S. M. Cohen, K. S. Walton, Langmuir. 2012, 28,
15606-15613.
H2/CO2
H2/N2
H2/CH4
H2/C2H4
Y. Tan, Y. He, J. Zhang, Inorg. Chem. 2012, 51, 9649-9654.
CH4
C2H4
[10] S. R. Venna, M. A. Carreon, J. Am. Chem. Soc. 2010, 132, 76-78.
[11] W. Wang, X. Dong, J. Nan, W. Jin, Z. Hu, Y. Chen, J. Jiang, Chem.
Commun. 2012, 48, 7022–7024.
Upper bound 2008
Upper bound 1991
N2
CO2
0.1
0.01 0.1
0.28 0.30 0.32 0.34 0.36 0.38 0.40
1
10
100 1000 10000100000
H2 permeability / Barrer
Kinetic diameter (nm)
[12] S. Jiang, X. Shi, F. Sun, G. Zhu, Chem. Asian J. 2020, 15, 2371-2378.
[13] Y. Liu, Z. Ng, E. A. Khan, H.-K. Jeong, C.-b. Ching, Z. Lai, Micropor.
Mesopor. Mat. 2009, 118, 296-301.
Figure 5. (a) Single gas permeances on the Kgm-OEt membranes at 25 °C and
10 kPa with the kinetic diameters. (b) H2/CO2 selectivity versus H2 permeability
for Kgm-OEt membrane at 25 °C and 10 kPa, compared with the upper bound
lines for polymeric membranes are based on Robeson (2008) and Robeson
(1991).
[14] A. Huang, W. Dou, J. Caro, J. Am. Chem. Soc. 2010, 132, 15562-15564.
[15] S. Tanaka, K. Okubo, K. Kida, M. Sugita, T. Takewaki, J. Membr. Sci.
2017, 544, 306-311.
[16] H. Yin, J.Wang, Z.Xie, J.Yang, J.Bai, J.Lu, Y. Zhang, D. Yin, J. Lin, Chem.
Commun. 2014, 50, 3699-3701.
As a comparison, we tested the binary-gas permeation of Kgm-
OEt membrane prepared on the unmodified Al2O3 substrate
(Table S1). The separation factor for H2 and other gases were
lower than 2. This value is much lower than Knudsen constant,
the reason can be attributed to the existence of pinholes or poor
intergrowth of particles. The results clearly illustrate that APTEs
[17] S. Zhou, X. Zou, F. Sun, F. Zhang, S. H. Zhao, T. Schiestel, G. Zhu, J.
Mater. Chem. 2012, 22, 10322-10328.
[18] Y. Sun, Y. Liu, J. Caro, X. Guo, C. Song, Y. Liu, Angew. Chem. Int. Ed.
2018, 130, 16320-16325.
[19] F. Zhang, X. Zou, X. Gao, S. Fan, F. Sun, H. Ren, G. Zhu, Adv. Funct.
Mater. 2012, 22, 3583-3590.
3
This article is protected by copyright. All rights reserved.