6756 J. Phys. Chem. A, Vol. 103, No. 34, 1999
Pasinszki et al.
(18) Kimura, K.; Katsumata, S.; Achiba, Y.; Yamazaki, T.; Iwata, S.
Handbook of He I Photoelectron Spectra of Fundamental Organic
Molecules; Japan Scientific Press: Tokyo, 1981.
(19) Bastide, J.; Maier, J. P. Chem. Phys. 1976, 12, 177.
(20) (a) Eland, J. H. D. Philos. Trans. R. Soc. London, Ser. A 1970,
268, 87. (b) Cradock, S.; Ebsworth, E. A. V.; Murdoch, J. D. J. Chem.
Soc., Faraday Trans. 2 1972, 68, 86. (c) Cvitas, T.; Klasinc, L. J. Chem.
Soc., Faraday Trans. 2 1976, 72, 1240.
(21) Lee, T. H.; Colton, R. J.; White, M. G.; Rabalais, J. W. J. Am.
Chem. Soc. 1975, 97, 4845.
(22) (a) Cˇ erma´k, V. J. Electron. Spectrosc. Relat. Phenom. 1976, 9,
419. (b) Brion, C. E.; Yee, D. S. C. J. Electron. Spectrosc. Relat. Phenom.
1977, 12, 77.
ment with the experimental results. They, furthermore, provide
information about the H atom region of the molecules, which
could not be probed by experiment, and indicate that the
interaction potential is repulsive around the hydrogen atom.
Both experimental and calculated results indicate the existence
of stable Li-M radicals, among those the thermodynamically
most stables are the four-membered rings HCNOLi and
HNNNLi. According to QCISD calculations, the unpaired
electron of the lithium atom completely delocalizes on the CNO
or NNN frame, and the stabilization of this latter explains the
large bonding energy of these π-type complexes. The formation
of π-complex and delocalization of the lithium valence electron
is an interesting result of this work, and we plan to further
investigate this. Our preliminary calculations on similar systems,
such as HNCO + Li, HNCS + Li, and NCCN + Li, indicate
the same effect found in this work, namely, the π-complex
formation results in the delocalization of the metal unpaired
electron and large bonding energy.
(23) Hotop, H.; Kolb, E.; Lorenzen, J. J. Electron. Spectrosc. Relat.
Phenom. 1979, 16, 213.
(24) Wentrup, C.; Gerecht, B.; Briehl, H. Angew. Chem., Int. Ed. Engl.
1979, 18, 467.
(25) (a) Gunther, P.; Meyer, R. Z. Elektrochem. 1935, 41, 541. (b)
Krakow, B.; Lord, R. C.; Neeby, G. O. J. Mol. Spectrosc. 1968, 27, 148.
(26) Claisen, L.; Zedel, W. Chem. Ber. 1891, 24, 140.
(27) Mitsuke, K.; Takami, T.; Ohno, K. J. Chem. Phys. 1989, 91, 1618.
(28) Gardner, J. L.; Samson, J. A. R. J. Electron. Spectrosc. Relat.
Phenom. 1976, 8, 469.
(29) (a) Rothe, E. W.; Neynaber, R. H.; Trajillo, S. M. J. Chem. Phys.
1965, 42, 3310. (b) Niehaus, A. AdV. Chem. Phys. 1981, 45, 399. (c) Hotop,
H. Radiat. Res. 1974, 59, 379. (d) Haberland, H.; Lee, Y. T.; Siska, P. E.
AdV. Chem. Phys. 1981, 45, 487.
(30) (a) Teffo, J. L.; Che´din, A. J. Mol. Spectrosc. 1989, 135, 389. (b)
Bunker, P. R.; Landsberg, B. M.; Winnewisser, B. P. J. Mol. Spectrosc.
1979, 74, 9. (c) Winnewisser, B. P. J. Mol. Spectrosc. 1980, 82, 220.
(31) Boys, S. F.; Bernardi, F. Mol. Phys. 1970, 10, 553.
(32) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.;
Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G.
A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski,
V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.;
Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.;
Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.;
Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-
Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian 94, revision C.3; Gaussian,
Inc.: Pittsburgh, PA, 1995.
Acknowledgment. We thank the Japanese Ministry of
Education, Science, and Culture for a Grant in Aid for Scientific
Research in support of this work. T.P. thanks the Japan Society
for the Promotion of Science (JSPS) for a JSPS Invitation
Fellowship (IDNo. L98519) and the Hungarian Scientific
Research Found (OTKA Grant F022031) in support of this work.
References and Notes
(1) Pasinszki, T.; Yamakado, H.; Ohno, K. J. Phys. Chem. 1995, 99,
14678.
(2) Ohshimo, K.; Tsunoyama, H.; Yamakita, Y.; Misaizu, F.; Ohno,
K. Chem. Phys. Lett. 1999, 301, 356.
(3) Kasai, P. H. J. Am. Chem. Soc. 1998, 120, 7884.
(4) Ohno, K.; Yamakado, H.; Ogawa, T.; Yamata, T. J. Chem. Phys.
1996, 105, 7536.
(33) von Niessen, W.; Schirmer, J.; Cederbaum, L. S. Comput. Phys.
Rep. 1984, 1, 57.
(34) A° sbrink, L.; Fridh, C.; Lindholm, E. Chem. Phys. Lett. 1977, 52,
69. The HAM/3 program is available from the Quantum Chemistry Program
Exchange, Indiana University, Bloomington, IN (D. P. Chong, QCMP005,
1985).
(35) Chong, D. P. Theor. Chim. Acta 1979, 51, 55.
(36) Zeiss, G. D.; Chong, D. P. J. Electron. Spectrosc. Relat. Phenom.
1980, 18, 279.
(37) Pasinszki, T.; Kishimoto, N.; Ohno, K. Manuscript in preparation.
(38) Ohno, K.; Takami, T.; Mitsuke, K.; Ishida, T. J. Chem. Phys. 1991,
94, 2675.
(5) (a) Kishimoto, N.; Yamakado, H.; Yamata, T.; Ogawa, T.; Ohno,
K. Int. Conf. Phys. Electron. At. Collisions, 19th, 1995, 1995, 807. (b)
Auerbach, D. J. In Atomic and Molecular Beam Methods; Scoles, G., Ed.;
Oxford University Press: New York 1988; p 369.
(6) Takami, T.; Mitsuke, K.; Ohno, K. J. Chem. Phys. 1991, 95, 918.
(7) Takami, T.; Ohno, K. J. Chem. Phys. 1992, 96, 6523.
(8) Ohno, K.; Okamura, K.; Yamakado, H.; Hoshino, S.; Takami, T.;
Yamauchi, M. J. Phys. Chem. 1995, 99, 14247.
(9) Yamakado, H.; Yamauchi, M.; Hoshino, S.; Ohno, K. J. Phys.
Chem. 1995, 99, 17093.
(39) Calculated total atomic charges (natural population analysis using
the QCISD density; calculations were done at the optimized QCISD
geometries of molecules). N(1)N(2)O: N(1), -0.06; N(2), +0.40; O, -0.34.
HCNO: H, +0.23; C, -0.01; N, +0.19; O, -0.41. HN(1)N(2)N(3): H,
+0.34; N(1), -0.53; N(2), +0.23; N(3), -0.04.
(40) Calculated structure and rotational constants of HCNOLi π-com-
plex, HCNOLi(II), using the B3LYP/6-311++G** method: CH ) 1.088
Å, CN ) 1.261 Å, NO ) 1.301 Å, LiC ) 2.032 Å, LiO ) 1.823 Å, ONC
) 131.5°, NCH ) 118.2°; total energy ) -176.179464 au; bonding energy
) 157.3 kJ/mol; A ) 25.1756, B ) 11.8161, C ) 8.0417 GHz.
(41) Calculated structure and energy of HCNOLi(I) at the B3LYP/
6-311++G** level: CH ) 1.091 Å, CN ) 1.242 Å, NO ) 1.321 Å, LiO
) 1.615 Å, HCN ) 119.2°, CNO ) 129.3°, NOLi ) 172.2°; total energy
) -176.163340 au; bonding energy ) 115.0 kJ/mol; barrier to isomerization
) 5.6 kJ/mol.
(10) Kishimoto, N.; Yamakado, H.; Ohno, K. J. Phys. Chem. 1996, 100,
8204.
(11) Yamauchi, M.; Yamakado, H.; Ohno, K. J. Phys. Chem. A 1997,
101, 6184.
(12) Yamakado, H.; Ogawa, T.; Ohno, K. J. Phys. Chem. A 1997, 101,
3887.
(13) Pasinszki, T.; Yamakado, H.; Ohno, K. J. Phys. Chem. 1993, 97,
12718.
(14) Ohno, K.; Kishimoto, N.; Yamakado, H. J. Phys. Chem. 1995, 99,
9687.
(15) Kishimoto, N.; Yokoi, R.; Yamakado, H.; Ohno, K. J. Phys. Chem.
A 1997, 101, 3284.
(16) Kishimoto, N.; Aizawa, J.; Yamakado, H.; Ohno, K. J. Phys. Chem.
A 1997, 101, 5038.
(17) (a) Brundle, C. R.; Turner, D. W. Int. J. Mass Spectrom. Ion Phys.
1969, 2, 195. (b) Dehmer, P. M.; Dehmer, J. L.; Chupka, W. A. J. Chem.
Phys. 1980, 73, 126. (c) Cvitas, T.; Klasinc, L.; Kovac, B.; McDiarmid, R.
J. Chem. Phys. 1983, 79, 1565.
(42) Schulz, C. P.; Hertel, I. V. Solvated Atoms in Polar Solvents. In
Clusters of Atoms and Molecules II; Haberland, H., Ed.; Springer-Verlag:
Berlin-Heidelberg, 1994; pp 7-18.