Paper
RSC Advances
asymmetric supercapacitor exhibits a high energy density of 11 C.-C. Hu, W.-C. Chen and K.-H. Chang, How to Achieve
18.3 W h kgꢀ1 at a power density of 326 W kgꢀ1
.
Maximum Utilization of Hydrous Ruthenium Oxide for
Supercapacitors, J. Electrochem. Soc., 2004, 151, A281–A290.
12 C.-C. Hu, K.-H. Chang, M.-C. Lin and Y.-T. Wu, Design and
Tailoring of the Nanotubular Arrayed Architecture of
Hydrous RuO2 for Next Generation Supercapacitors, Nano
Lett., 2006, 6, 2690–2695.
Acknowledgements
We gratefully acknowledge the nancial support of this
research by the National Natural Science Foundation of China 13 D.-D. Zhao, S.-J. Bao, W.-J. Zhou and H.-L. Li, Preparation of
(21403044), the China Postdoctoral Science Foundation
(2014M561332), the Heilongjiang Postdoctoral Fund
(LBH-Z13059), the Major Project of Science and Technology of
hexagonal nanoporous nickel hydroxide lm and its
application for electrochemical capacitor, Electrochem.
Commun., 2007, 9, 869–874.
Heilongjiang Province (GA14A101), the Fundamental Research 14 H. Jiang, T. Zhao, C. Li and J. Ma, Hierarchical self-assembly
Funds for the Central Universities (HEUCF20151004) and the
Project of Research and the Development of Applied Technology
of Harbin (2014DB4AG016).
of ultrathin nickel hydroxide nanoakes for high-
performance supercapacitors, J. Mater. Chem., 2011, 21,
3818–3823.
15 L. Cao, F. Xu, Y. Y. Liang and H. L. Li, Preparation of the
Novel Nanocomposite Co(OH)2/Ultra-Stable YZeolite and
Its Application as a Supercapacitor with High Energy
Density, Adv. Mater., 2004, 16, 1853–1857.
Notes and references
1 P. Simon and Y. Gogotsi, Materials for electrochemical 16 V. Gupta, T. Kusahara, H. Toyama, S. Gupta and N. Miura,
capacitors, Nat. Mater., 2008, 7, 845–854.
2 D. R. Rolison, J. W. Long, J. C. Lytle, A. E. Fischer,
C. P. Rhodes and T. M. McEvoy, et al. Multifunctional 3D
Potentiostatically deposited nanostructured a-Co(OH)2: A
high performance electrode material for redox-capacitors,
Electrochem. Commun., 2007, 9, 2315–2319.
nanoarchitectures for energy storage and conversion, 17 G. Zhu, H. Li, L. Deng and Z.-H. Liu, Low-temperature
Chem. Soc. Rev., 2009, 38, 226–252.
3 G. Wang, L. Zhang and J. Zhang, A review of electrode
synthesis of d-MnO2 with large surface area and its
capacitance, Mater. Lett., 2010, 64, 1763–1765.
materials for electrochemical supercapacitors, Chem. Soc. 18 O. Ghodbane, F. Ataherian, N.-L. Wu and F. Favier, In situ
Rev., 2012, 41, 797–828.
crystallographic
investigations
of
charge
storage
4 P. J. Hall, M. Mirzaeian, S. I. Fletcher, F. B. Sillars,
A. J. R. Rennie and G. O. Shitta-Bey, et al. Energy storage in
mechanisms in MnO2-based electrochemical capacitors, J.
Power Sources, 2012, 206, 454–462.
electrochemical capacitors: designing functional materials 19 G. Wang, J. Huang, S. Chen, Y. Gao and D. Cao, Preparation
to improve performance, Energy Environ. Sci., 2010, 3,
1238–1251.
and supercapacitance of CuO nanosheet arrays grown on
nickel foam, J. Power Sources, 2011, 196, 5756–5760.
5 X. Zhao, B. M. Sanchez, P. J. Dobson and P. S. Grant, The role 20 Y. Li, S. Chang, X. Liu, J. Huang, J. Yin and G. Wang, et al.
of nanomaterials in redox-based supercapacitors for next
generation energy storage devices, Nanoscale, 2011, 3, 839–
855.
Nanostructured CuO directly grown on copper foam and
their supercapacitance performance, Electrochim. Acta,
2012, 85, 393–398.
6 T. Xue, C.-L. Xu, D.-D. Zhao, X.-H. Li and H.-L. Li, 21 J. Huang, H. Wu, D. Cao and G. Wang, Inuence of Ag doped
Electrodeposition of mesoporous manganese dioxide
supercapacitor electrodes through self-assembled triblock
copolymer templates, J. Power Sources, 2007, 164, 953–958.
7 J. Gamby, P. L. Taberna, P. Simon, J. F. Fauvarque and
M. Chesneau, Studies and characterisations of various
CuO nanosheet arrays on electrochemical behaviors for
supercapacitors, Electrochim. Acta, 2012, 75, 208–212.
22 P. M. Kulal, D. P. Dubal, C. D. Lokhande and V. J. Fulari,
Chemical synthesis of Fe2O3 thin lms for supercapacitor
application, J. Alloys Compd., 2011, 509, 2567–2571.
activated carbons used for carbon/carbon supercapacitors, 23 X. Xia, Q. Hao, W. Lei, W. Wang, D. Sun and X. Wang,
J. Power Sources, 2001, 101, 109–116.
Nanostructured ternary composites of graphene/Fe2O3/
polyaniline for high-performance supercapacitors, J. Mater.
Chem., 2012, 22, 16844–16850.
8 J. Chmiola, G. Yushin, R. Dash and Y. Gogotsi, Effect of pore
size and surface area of carbide derived carbons on specic
capacitance, J. Power Sources, 2006, 158, 765–772.
9 D. N. Futaba, K. Hata, T. Yamada, T. Hiraoka, Y. Hayamizu
and Y. Kakudate, et al. Shape-engineerable and highly
densely packed single-walled carbon nanotubes and their
24 M.-S. Wu, R.-H. Lee, J.-J. Jow, W.-D. Yang, C.-Y. Hsieh and
B.-J. Weng, Nanostructured Iron Oxide Films Prepared by
Electrochemical Method for Electrochemical Capacitors,
Electrochem. Solid-State Lett., 2009, 12, A1–A4.
application as super-capacitor electrodes, Nat. Mater., 2006, 25 A. Ghosh, E. J. Ra, M. Jin, H.-K. Jeong, T. H. Kim and
5, 987–994.
C. Biswas, et al. High Pseudocapacitance from Ultrathin
V2O5 Films Electrodeposited on Self-Standing Carbon-
Nanober Paper, Adv. Funct. Mater., 2011, 21, 2541–2547.
10 C.-M. Yang, Y.-J. Kim, M. Endo, H. Kanoh, M. Yudasaka and
S. Iijima, et al. Nanowindow-Regulated Specic Capacitance
of Supercapacitor Electrodes of Single-Wall Carbon 26 G. Wee, H. Z. Soh, Y. L. Cheah, S. G. Mhaisalkar and
Nanohorns, J. Am. Chem. Soc., 2006, 129, 20–21.
M. Srinivasan, Synthesis and electrochemical properties of
This journal is © The Royal Society of Chemistry 2015
RSC Adv., 2015, 5, 36656–36664 | 36663