B. Blanco et al. / Tetrahedron Letters 45 (2004) 8789–8791
8791
Table 1. Results of Csp3–Csp2 and Csp2–Csp2 Suzuki cross-couplings
giving rise to 8 and 11 (see Scheme 3) tested with recoverable catalyst 5
´
´
4. Cerezo, S.; Cortes, J.; Lopez-Romero, J. M.; Moreno-
Man˜as, M.; Parella, T.; Pleixats, R.; Roglans, A. Tetra-
hedron 1998, 54, 14885–14904.
Run
6 to 8
9 to 11
´
5. Cortes, J.; Moreno-Man˜as, M.; Pleixats, R. Eur. J. Org.
Chem. 2000, 22, 239–243.
6. Masllorens, J.; Moreno-Man˜as, M.; Pla-Quintana, A.;
Roglans, A. Org. Lett. 2003, 5, 1559–1561.
7. Moreno-Man˜as, M.; Pleixats, R.; Spengler, J.; Chevrin,
t (h)
Conversion (%)
t (h)
Conversion (%)
1
2
3
4
5
2
98a
80b
85b
70b
60b
72
24
24
24
24
81a
2
71a
2
100a, 69b
42a
95a
´
C.; Estrine, B.; Bouquillon, S.; Henin, F.; Muzart, J.; Pla-
Quintana, A.; Roglans, A. Eur. J. Org. Chem. 2003, 274–
2.5
4
283.
a Conversion by 1H NMR.
b Isolated yield.
8. Cacchi, S.; Fabrizi, G.; Goggiamani, A.; Moreno-Man˜as,
M.; Vallribera, A. Tetrahedron Lett. 2002, 43, 5537–
5540.
9. Stein, A.; Melde, B. J.; Schroden, R. C. Adv. Mater. 2000,
12, 1403–1419.
´
10. (a) Corriu, R. J. P.; Datas, L.; Guari, Y.; Mehdi, A.; Reye,
C.; Thieuleux, C. Chem. Commun. 2001, 763–764; (b)
solvents made with the nonanchored macrocyclic com-
plex. In both heterogeneous reactions, the solid catalyst
recovered by filtration was washed successively with
water, ethanol, and diethyl ether before being recycled
up to five times. The percentage of metal leaching was
determined in the crude product after the first cycle
and was found to be low (0.07% for 8 and 0.7% for 11).
´
Corriu, R. J. P.; Hoarau, C.; Mehdi, A.; Reye, C. Chem.
Commun. 2000, 71–72.
11. Corriu, R. J. P.; Mehdi, A.; Reye, C.; Thieuleux, C. Chem.
Mater. 2004, 16, 159–166.
´
´
12. Cerezo, S.; Cortes, J.; Galvan, D.; Lago, E.; Marchi, C.;
Molins, E.; Moreno-Man˜as, M.; Pleixats, R.; Torrejon, J.;
Some authors have pointed out22 that released Pd under
reaction conditions acts as the true catalyst in immobi-
lized palladium systems and redeposition of the metal
after completion of the reaction is claimed. We wanted
to find out if there was a contribution of a homogeneous
pathway in our case. No significant further conversion
to 11 was found when the catalyst 5 was filtered after
5h of reaction from the cooled down reaction mixture
and the liquid phase was allowed to react for 21h under
the same conditions in the presence of new added base.
Then, we repeated the experiment (different batch of
catalyst 5) filtering off the solid from the hot reaction
mixture after 3h of reaction (32% conversion). When
the remaining liquid phase was made to react for 18h
in the presence of new added base, the conversion raised
very significantly. Thus, a homogeneous pathway due to
metal releasing in the reaction conditions is, at least in
part, responsible for the catalysis.
´
Vallribera, A. Eur. J. Org. Chem. 2001, 329–337.
13. Compound 2: mp 166–67°C; IR (KBr): 2958, 2929, 1599,
1
1494, 1459, 1363, 1313, 1256, 1150, 1094cmÀ1; H NMR
(CDCl3, 250MHz):
d 1.22 (m, 36H), 2.88 (septet,
J = 7.0Hz, 2H), 3.75 (m, 12H), 4.06 (septet, J = 6.8Hz,
4H), 5.73 (m, 6H), 7.18 (m, 6H), 7.80 (dd, J = 7.8 and
5.2Hz, 2H); MALDI-TOF-MS (m/z): 920.5 ([M + Na]+),
936.5 ([M + K]+). Anal. Calcd (%) for C48H68FN3O6S3: C
64.18, H 7.63, N 4.68, S 10.71; found: C 63.58, H 7.98, N
4.69, S 10.62. Compound 3: mp 88–90°C; IR (KBr): 3390
(broad), 2958, 2928, 1600, 1461, 1363, 1317, 1151,
1092cmÀ1 1H NMR (CDCl3, 250MHz): d 1.22 (m,
;
36H), 1.47 (broad s, 2H), 2.87 (septet, J = 6.7Hz, 2H),
2.97 (td, J = 6.4 and 1.6Hz, 2H), 3.20 (td, J = 6.5 and
5.8Hz, 2H), 3.70–3.77 (m, 12H), 4.06 (septet, J = 6.7Hz,
4H), 4.67 (t, J = 5.6Hz, 1H), 5.7 (m, 6H), 6.59 (d,
J = 8.9Hz, 2H), 7.13 (s, 4H), 7.54 (d, J = 8.9Hz, 2H);
13C NMR (62.5MHz, CDCl3): 23.3, 24.5, 29.0, 33.9, 40.5,
45.2, 48.5, 50.9, 111.7, 123.7, 125.5, 128.8, 129.0, 129.7,
130.7, 151.3, 151.5, 152.9, 158.6. MALDI-TOF-MS (m/z):
938.3 ([M + H]+), 960.2 ([M + Na]+), 976.2 ([M + K]+).
Anal. Calcd (%) for C50H75N5O6S3. H2O: C 62.79, H 8.11,
N 7.32, S 10.06; found: C 62.83, H 8.16, N 6.85, S 9.47.
14. Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G.
D. J. Am. Chem. Soc. 1998, 120, 6024–6026.
In summary, a mesostructured hybrid material with cov-
alently attached macrocyclic triolefinic palladium(0)
complex was prepared and found to be an active and
reusable catalyst in Suzuki cross-couplings.
15. Suzuki, A. J. Organomet. Chem. 1999, 576, 147–168.
16. (a) Mubofu, E. B.; Clark, J. H.; Macquarrie, D. J. Green
Chem. 2001, 3, 23–25; (b) Gotov, B.; Macquarrie, D. J.;
Toma, S. Platinum Metals Rev. 2001, 45, 102–110.
Acknowledgements
Financial support from MCyT (Project BQU2002-
04002-C02) and Generalitat de Catalunya (Project
SGR2001-00181) is gratefully acknowledged. B.B.
17. Kosslick, H.; Mo¨nnich, I.; Paetzold, E.; Fuhrmann, H.;
Fricke, R.; Muller, D.; Oehme, G. Microporous Mesopor-
¨
ous Mater. 2001, 44–45, 537–545.
`
thanks Universitat Autonoma de Barcelona for a pre-
´
18. (a) Baleizao, C.; Corma, A.; Garcıa, H.; Leyva, A. Chem.
Commun. 2003, 22, 606–607; (b) Baleizao, C.; Corma, A.;
doctoral scholarship. We are indebted to A. Serra for
technical assistance.
´
Garcıa, H.; Leyva, A. J. Org. Chem. 2004, 69, 439–446.
19. Gurbuz, N.; Ozdemir, I.; Cetinkaya, B.; Seckin, T. Appl.
Organomet. Chem. 2003, 17, 776–780.
References and notes
20. Bedford, R. B.; Cazin, C. S. J.; Hursthouse, M. B.; Light,
M. E.; Pike, K. J.; Wimperis, S. J. Organomet. Chem.
2001, 633, 173–181.
21. Moreno-Man˜as, M.; Pajuelo, F.; Pleixats, R. J. Org.
Chem. 1995, 60, 2396–2397.
22. (a) Zhao, F.; Bhanage, B. M.; Shirai, M.; Arai, M. Chem.
Eur. J. 2000, 6, 843; (b) Biffis, A.; Zecca, M.; Basato, M.
Eur. J. Inorg. Chem. 2001, 1131.
1. Leadbeater, N. E.; Marco, M. Chem. Rev. 2002, 102,
3217–3274.
2. Ying, J. Y.; Mehnert, C. P.; Wong, M. S. Angew. Chem.
Int. Ed. 1999, 38, 56–77.
3. De Vos, D. E.; Dams, M.; Sels, B. F.; Jacobs, P. A. Chem.
Rev. 2002, 102, 3615–3640.