ChemComm
Communication
answer, especially since the origin of karrikins is still unknown.
However, here we provide evidence of the ability of two molecules of
the karrikin family, KAR1/2, to affect QS in three different bacteria,
two of which (P. aeruginosa, A. tumefaciens) are known to interact
with plants/trees in nature. While in P. aeruginosa a clear QS
antagonist effect was observed on the rhl system, which controls
the expression of pyocyanin, in A. tumefaciens we only measured a
mild agonist effect. Although the marine bacterium V. harveyi is not
likely to encounter karrikins in nature, the results were interesting
given the proposed interspecies signaling role ascribed to AI-2.
The ability of KAR1/2 to activate or inhibit QS pathways might
reveal a new type of interkingdom communication. Further studies
on the activity and mechanisms of action of these molecules are
needed in order to answer more fundamental questions. Although
we determined that KAR1/2 most likely interferes with P. aeruginosa
QS through inhibition of the rhl system, direct identification of
proteins that bind KAR1/2 will give us further insight from a
mechanistic point of view. The presence, localization and identity
of KAR1/2 receptor in bacteria are currently under investigation.
We would like to thank Eilon Shani, Mark Estelle and Pieter
Dorrestein (UCSD) for their advice and support, and E. P. Greenberg,
B. L. Bassler, M. G. Surette, P. A. Sokol and S. E. Lindow for
generously providing bacterial strains. This work was supported
by the European Research Council (Starting Grant 240356, MMM).
Fig. 4 (a) Activation of QS by synergism by different concentrations of
KAR1/2 in V. harveyi BB170. (b) Activation of QS by synergism by different
concentrations of KAR1/2 in the presence of exogenous synthetic 133 nM
AI-2 in V. harveyi MM32. Above 200 mM KAR1 was toxic.
Notes and references
1 H. Chung, S. J. Pamp, J. A. Hill, N. K. Surana, S. M. Edelman,
E. B. Troy, N. C. Reading, E. J. Villablanca, S. Wang, J. R. Mora,
Y. Umesaki, D. Mathis, C. Benoist, D. A. Relman and D. L. Kasper,
Cell, 2012, 149, 1578.
2 J. E. Gonzalez and N. D. Keshavan, Microbiol. Mol. Biol. Rev., 2006,
70, 859.
3 M. B. Miller and B. L. Bassler, Annu. Rev. Microbiol., 2001, 55, 165.
4 S. D. S. Chiwocha, K. W. Dixon, G. R. Flematti, E. L. Ghisalberti,
D. J. Merritt, D. C. Nelson, J. A. M. Riseborough, S. M. Smith and
J. C. Stevens, Plant Sci., 2009, 177, 252.
5 K. W. Dixon, D. J. Merritt, G. R. Flematti and E. L. Ghisalberti, Acta
Hortic., 2009, 813, 155.
6 G. R. Flematti, E. L. Ghisalberti, K. W. Dixon and R. D. Trengove,
Science, 2004, 305, 977.
7 D. C. Nelson, J. A. Riseborough, G. R. Flematti, J. Stevens, E. L.
Ghisalberti, K. W. Dixon and S. M. Smith, Plant Physiol., 2009, 149, 863.
8 W. C. Fuqua, S. C. Winans and E. P. Greenberg, J. Bacteriol., 1994,
176, 269.
9 A. C. Hayward, Annu. Rev. Phytopathol., 1991, 29, 65.
10 J. Loh, D. P. Lohar, B. Andersen and G. Stacey, J. Bacteriol., 2002,
184, 1759.
Fig. 5 Effect of KAR1 on infection of Arabidopsis thaliana Colombia by
P. aeruginosa wild type strain PAO1; upper panel, left: with 100 mM KAR1, after
24 h, and right: after 48 h; lower panel, left: without KAR1, after 24 h, and right:
after 48 h. The bar graphs reflect the ratio of average leaf area between 24 and
48 h. Plant leaf surface areas were calculated using ImageJ 1.47t.
11 J. T. Loh, J. P. Yuen-Tsai, M. G. Stacey, D. Lohar, A. Welborn and
G. Stacey, Mol. Microbiol., 2001, 42, 37.
12 S. T. Schenk, E. Stein, K. H. Kogel and A. Schikora, Plant Signaling
Behav., 2012, 7, 178.
13 E. K. Shiner, K. P. Rumbaugh and S. C. Williams, FEMS Microbiol.
Rev., 2005, 29, 935.
14 S. B. Von Bodman, W. D. Bauer and D. L. Coplin, Annu. Rev.
Phytopathol., 2003, 41, 455.
15 T. B. Rasmussen, M. E. Skindersoe, T. Bjarnsholt, R. K. Phipps, K. B.
Christensen, P. O. Jensen, J. B. Andersen, B. Koch, T. O. Larsen, M.
Hentzer, L. Eberl, N. Hoiby and M. Givskov, Microbiology, 2005, 151, 1325.
16 J. Zhu, P. M. Oger, B. Schrammeijer, P. J. Hooykaas, S. K. Farrand
and S. C. Winans, J. Bacteriol., 2000, 182, 3885–3895.
(36 Æ 11% vs. 65 Æ 8%, p o 0.03), indicating that the karrikin
mediated reduction in P. aeruginosa virulence slows down plant loss.27
This hypothesis was further strengthened by a slightly reduced induc-
tion of soft rot in lettuce midriffs upon infection with P. aeruginosa in
the presence of increasing amounts of KAR1 (Fig. S2, ESI†).
In this study we focused on the potential role of the karrikin
family in the modulation of QS (agonist, antagonist or synergism) in
different bacterial species. Whether the presence of karrikins, in the
post-forest-fire environment, simultaneously influences plant seed 17 E. D. Goddard-Borger, E. L. Ghisalberti and R. V. Stick, Eur. J. Org.
Chem., 2007, 3925.
18 K. Duan and M. G. Surette, J. Bacteriol., 2007, 189, 4827.
19 G. Dulla and S. E. Lindow, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 3082.
germination and bacterial group behavior (e.g. suppression of
virulence factors, nutrient production, antibiotic production) for
the benefit of habitat rehabilitation is still a major question to 20 S. P. Bernier, A. L. Beeston and P. A. Sokol, BMC Biotechnol., 2008, 8, 59.
5324 | Chem. Commun., 2014, 50, 5322--5325
This journal is ©The Royal Society of Chemistry 2014