10.1002/anie.201916154
Angewandte Chemie International Edition
RESEARCH ARTICLE
Project (2017-D-01). We also thank Prof. Wenping Hu (Tianjin
University) and Prof. Baodui Wang (Lanzhou University) for
valuable suggestions and help.
state for BPA, the photocatalytic degradation efficiency was
subsequently evaluated. More than 90% of BPA can be
degraded by Au@COF after 30 min under light irradiation
(Figure S18b). And the kinetic constant k is calculated to be
1.14×10-1 by fitting the kinetic curves (Figure S18c). Moreover,
high degradation efficiency of BPA over Au@COF can retain
after 5 cycles (Figure S18d).
Keywords: Z-scheme photocatalytic system • covalent organic
framework • Au cluster • photostability • pores
[1]
[2]
a) T. Yasukawa, H. Miyamura, S. Kobayashi, Chem. Soc. Rev. 2014,
43, 1450-1461; b) M. E. Hafez, H. Ma, W. Ma, Y. Long, Angew. Chem.
Int. Ed. 2019, 58, 6327-6332; c) S. Lee, Y. Wy, Y. W. Lee, K. Ham, S.
W. Han, Small 2017, 13, 1701633.
a) N. L. Rosi, C. S. Thaxton, C. A. Mirkin, Angew. Chem. Int. Ed. 2004,
43, 5500-5503; b) E. Auyeung, W. Morris, J. E. Mondloch, J. T. Hupp,
O. K. Farha, C. A. Mirkin, J. Am. Chem. Soc. 2015, 137, 1658−1662; c)
L. A. Gugliotti, D. L. Feldheim, B. E. Eaton, J. Am. Chem. Soc. 2005,
127, 17814-17818; d) R. Gill, F. Patolsky, E. Katz, I. Willner, Angew.
Chem. Int. Ed. 2005, 44, 4554-4557.
[3]
a) G. C. Bleier, J. Watt, C. K. Simocko, J. M. Lavin, D. L. Huber, Angew.
Chem. Int. Ed. 2018, 57, 7678-7681; b) H. Lee, I. I. Nedrygailov, C. Lee,
G. A. Somorjai, J. Y. Park, Angew. Chem. Int. Ed. 2015, 54, 2340-2344.
W. Heni, L. Vonna, H. Haidara, Nano Lett. 2015, 15, 442−449.
a) Z. Yan, M. G. Taylor, A. Mascareno, G. Mpourmpakis, Nano Lett.
2018, 18, 2696−2704; b) E. K. Fox, F. E. Haddassi, J. Hierrezuelo, T.
Ninjbadgar, J. K. Stolarczyk, J. Merlin, D. F. Brougham, Small 2018, 14,
1802278.
[4]
[5]
[6]
a) A. T. Bell, Science 2003, 299, 1688-1691; b) N. Ostojic, Z. Duan, A.
Galyamova, G. Henkelman, R. M. Crooks, J. Am. Chem. Soc. 2018,
140, 13775−13785; c) M. Zhao, K. Deng, L. He, Y. Liu, G. Li, H. Zhao,
Z. Tang, J. Am. Chem. Soc. 2014, 136, 1738−1741; d) X. Qiao, X.
Chen, C. Huang, A. Li, X. Li, Z. Lu, T. Wang, Angew. Chem. Int. Ed.
2019, 58, 16523-16527.
[7]
[8]
a) D. Sun, S. Jang, S. J. Yim, L. Ye, D. P. Kim, Adv. Funct. Mater. 2018,
28, 1707110; b) K. Cui, W. Zhong, L. Li, Z. Zhuang, L. Li, J. Bi, Y. Yu,
Small 2019, 15, 1804419; c) S. Lin, C. S. Diercks, Y. B. Zhang, N.
Kornienko, E. M. Nichols, Y. Zhao, A. R. Paris, D. Kim, P. Yang, O. M.
Yaghi, C. J. Chang, Science 2015, 349, 1208-1213.
Figure 7. Schematic diagrams of a) filter paper model and b) filter device.
a) A. P. Cote, A. I. Benin, N. W. Ockwig, M. O’Keeffe, A. J. Matzger, O.
M. Yaghi, Science 2005, 310, 1166-1170; b) S. Y. Ding, W. Wang,
Chem. Soc. Rev. 2013, 42, 548-568; c) P. Pachfule, S. Kandambeth, D.
D. Dı´azbc, R. Banerjee, Chem. Commun. 2014, 50, 3169-3172; d) Y.
Xu, X. Shi, R. Hua, R. Zhang, Y. Yao, B. Zhao, T. Liu, J. Zheng, G. Lu,
Appl. Catal. B Environ. 2019, 260, 118142.
Conclusion
In summary, a facile strategy to bridge ultrasmall Au NCs into
pores of
a
covalent organic framework for enhanced
photostability and photocatalytic performance has been
developed. Specifically, a novel composite material of loading
Au NCs on a thiol-modified COF was prepared. The ultrasmall
pores of COF support and strong binding energy of S-Au
provided double assurance for the photostability of Au NCs.
Furthermore, PEC experiments show Z-scheme photocatalytic
system is constructed by the formation of COF-S-Au bonding
bridge, which can effectively promote charge separation,
enhancing photocatalytic performance. Such design provides a
new way to develop COF support catalysts with controllable
activity and high stability.
[9]
S. Y. Ding, J. Gao, Q. Wang, Y. Zhang, W. G. Song, C. Y. Su, W.
Wang, J. Am. Chem. Soc. 2011, 133, 19816-19822.
[10] S. Lu, Y. Hu, S. Wan, R. McCaffrey, Y. Jin, H. Gu, W. Zhang, J. Am.
Chem. Soc. 2017, 139, 17082−17088.
[11] Q. Sun, B. Aguila, J. Perman, N. Nguyen, S. Ma, J. Am. Chem. Soc.
2016, 138, 15790−15796.
[12] a) B. Weng, K. Q. Lu, Z. Tang, H. M. Chen, Y. J. Xu, Nat. Commun.
2018, 9, 1543; b) J. Zhai, Y. Jia, L. Zhao, Q. Yuan, F. Gao, X. Zhang, P.
Cai, L. Gao, J. Guo, S. Yi, Z. Chai, Y. Zhao, X. Gao, ACS Nano. 2018,
12, 4378; c) R. Cai, P. R. Ellis, J. Yin, J. Liu, C. M. Brown, R. Griffin, G.
Chang, D. Yang, J. Ren, K. Cooke, P. T. Bishop, W. Theis, R. E.
Palmer, Small 2018, 14, 1703734.
[13] a) S. Liu, Y. J. Xu, Sci. Rep. 2016, 6, 22742; b) Y. S. Chen, P. V.
Kamat, J. Am. Chem. Soc. 2014, 136, 6075–6082; c) F. X. Xiao, Z.
Zeng, S. H. Hsu, S. F. Hung, H. M. Chen, B. Liu, ACS Appl. Mater.
Interfaces 2015, 7, 28105–28109.
Acknowledgements
We are thankful to the Program of Tianjin Science and
Technology Major Project and Engineering (19ZXYXSY00090);
the Program for Chang Jiang Scholars and Innovative Research
Team, Ministry of Education, China (IRT-16R61); the Natural
Science Foundation of China (21575115, 21705117); the
Program of Gansu Provincial Higher Education Research
[14] a) B. Weng, K. Q. Lu, Z. Tang, H. M. Chen, Y. J. Xu, Nat. Commun.
2018, 9, 1543; b) A. Kogo, N. Sakai, T. Tatsuma, Electrochem.
Commun. 2010, 12, 996–999.
[15] a) Q. Sun, B. Aguila, J. Perman, L. D. Earl, C. W. Abney, Y. Cheng, H.
Wei, N. Nguyen, L. Wojtas, S. Ma, J. Am. Chem. Soc. 2017, 139,
2786−2793; b) Q. Jiang, Y. Li, X. Zhao, P. Xiong, X. Yu, Y. Xu, L. Chen,
J. Mater. Chem. A 2018, 6, 17977–17981.
This article is protected by copyright. All rights reserved.