10
X. ZHAnG eT AL.
for 2, λex = 270 nm for 3), respectively, the blue-shift of 10 nm in 2 and 74 nm in 3 should be attributed
to a mixture of characteristics of intraligand and ligand-to-ligand charge transfer [24]. For 1, an emis-
sion at 396 nm (λex = 260 nm) is observed and the slight red-shift is probably caused by metal–ligand
coordination interactions when comparing with free L [25].
4. Conclusion
We have synthesized three networks under hydrothermal conditions by reaction of bis(benzimida-
zole) ligand and carboxylic acids with Co(II)/Ag(I) salts. Complexes 1–3 exhibit various structures; all
three complexes are further packed by hydrogen bonding interactions to generate supramolecular
architectures. Moreover, 1–3 display specific fluorescent properties, which are potential photosensitive
materials.
Supplementary material
CCDC 1436528-1436530 contain the supplementary crystallographic data for 1–3. These data can be obtained free of
Disclosure statement
no potential conflict of interest was reported by the authors.
Funding
The project was supported by the national natural Science Foundation of China [grant number 51474086]; natural Science
Foundation-Steel and Iron Foundation of Hebei Province [grant number B2015209299]; the Graduate Student Innovation
Fund of north China university of Science and Technology [grant number 2015S13].
References
[1] (a) Q.L. Zhu, Q. Xu. Chem. Soc. Rev., 43, 5468 (2014); (b) T. Zhang, W. Lin. Chem. Soc. Rev., 43, 5982 (2014); (c) J.M.
Hao, B.Y. Yu, K. Van Hecke, G.H. Cui. CrystEngComm, 17, 2279 (2015); (d)M. Arici, O.Z. Yeşılel, S. Keskın, O. Şahın, O.
Büyükgüngör. J. Coord. Chem., 66, 4093 (2013).
[2] (a) J.V. Morabito, L.Y. Chou, Z. Li, C.M. Manna, C.A. Petroff, R.J. Kyada, J.M. Palomba, J.A. Byers, C.K. Tsung. J. Am. Chem.
Soc., 136, 12540 (2014); (b) Y. Hijikata, S. Horike, M. Sugimoto, M. Inukai, T. Fukushima, S. Kitagawa. Inorg. Chem., 52,
3634 (2013); (c) X.X. Wang, B.Y. Yu, K. Van Hecke, G.H. Cui. RSC Adv., 4, 61281 (2014).
[3] (a) B. Wu, W.H. Zhang, Z.G. Ren, J.P. Lang. Chem. Commun., 51, 14893 (2015); (b) Y.Q. Chen, G.R. Li, Y.K. Qu, Y.H. Zhang,
K.H. He, Q. Gao, X.H. Bu. Cryst. Growth Des., 13, 901 (2013); (c) G.H. Cui, C.H. He, C.H. Jiao, J.C. Geng, V.A. Blatov.
CrystEngComm, 14, 4210 (2012); (d) Z. Yang, S.S. Han, L.Y. Zheng, Y.F. Peng, B.L. Li, H.Y. Li. J. Coord. Chem., 68, 1213
(2015).
[4] (a) X.L. Wang, C. Qin, e.B. Wang, L. Xu, Z.M. Su, C.W. Hu. Angew. Chem. Int. Ed., 43, 5036 (2004); (b) J.R. Li, Q. Yu, e.C.
Sanudo, Y. Tao, X.H. Bu. Chem. Commun., 2602 (2007); (c) C.C. Wang, J.R. Li, X.L. Lv, Y.Q. Zhang, G.S. Guo. Energy Environ.
Sci., 7, 2831 (2014); (d)Y.G. Sun, J. Li, J. You, Y. Guo, G. Xiong, B.Y. Ren, L.X. You, F. Ding, S.J. Wang, F. Verpoort, I. Dragutan,
V. Dragutan. J. Coord. Chem., 68, 1199 (2015).
[5] (a) Y.Q. Yang, J. Yang, W.Q. Kan, Y. Yang, J. Guo, J.F. Ma. Eur. J. Inorg. Chem., 2013, 280 (2013); (b) J.W. Zhang, X.M. Kan,
X.L. Li, J. Luan, X.L. Wang. CrystEngComm, 17, 3887 (2015); (c) X.X. Wang, Y.G. Liu, M. Ge, G.H. Cui. Chinese J. Inorg.
Chem., 31, 2065 (2015).
[6] (a) S.S.P. Dias, M.V. Kirillova, V. André, J. Kłak, A.M. Kirillov. Inorg. Chem. Front., 2, 525 (2015); (b) Y. Wang, S.Q. Shen,
J.H. Zhou, T. Wang, S.n. Wang, G.X. Liu. Inorg. Chem. Commun., 30, 5 (2013); (c) G.L. Wen, Y.Y. Wang, H. Wang, e.K.
Lermontova, C.Y. Guo, Q.Z. Shi. J. Mol. Struct., 928, 125 (2009).
[7] (a) K.L. Hou, F.Y. Bai, Y.H. Xing, J.L. Wang, Z. Shi. CrystEngComm, 13, 3884 (2011); (b) C.P. Li, J. Chen, M. Du. CrystEngComm,
12, 4392 (2010); (c) L. Wang, Y.J. Hu, W.Y. Xu, Y.Y. Pang, F.Q. Liu, Y. Yang. RSC Adv., 4, 56816 (2014).
[8] (a) H. Jiang, Y.Y. Liu, J.F. Ma, W.L. Zhang, J. Yang. Polyhedron, 27, 2595 (2008); (b) Q.Y. Huang, X.X. Wang, T. Li, X.R. Meng.
J. Coord. Chem., 68, 88 (2014); (c) Y. Wang, Y. Qi, Q. Li, Z. Lu, Y.W. Wang. J. Coord. Chem., 67, 3463 (2014).